Algorithms to predict moisture content of grain using relative humidity time-series

Charles B. Delahunt, Wenbo Wang, S. Ghionea, Andrew Miller, A. Chan, Anjali Sehrawat, C. Mehanian, M. Friend
{"title":"Algorithms to predict moisture content of grain using relative humidity time-series","authors":"Charles B. Delahunt, Wenbo Wang, S. Ghionea, Andrew Miller, A. Chan, Anjali Sehrawat, C. Mehanian, M. Friend","doi":"10.1109/GHTC46280.2020.9342933","DOIUrl":null,"url":null,"abstract":"Post-harvest losses to grain crops are conservatively estimated at 10-20% (ranging up to 40%) in many countries. In particular, grains must be properly dried to avoid spoilage, harmful mycotoxins from mold, and financial loss. Smallholder farmers can thus greatly benefit from a means to assess Moisture Content (MC) in their grain. We describe a two-step algorithm, with very low computational cost, that calculates MC with high accuracy, using Relative Humidity (RH) and Temperature (T) time-series. The time-series do not need to reach equilibrium state, enabling fast (12-minute) time-to-result. The algorithm first curve-fits the RH time-series to estimate asymptotic RH, in order to leverage the physics of the RH-T-MC equilibrium relationship. It then uses regression to estimate MC to within ±1% on ≥95% of samples over a wide range of ambient RH-T conditions, on both Lab and Field samples of 10 different grains.","PeriodicalId":314837,"journal":{"name":"2020 IEEE Global Humanitarian Technology Conference (GHTC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Global Humanitarian Technology Conference (GHTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GHTC46280.2020.9342933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Post-harvest losses to grain crops are conservatively estimated at 10-20% (ranging up to 40%) in many countries. In particular, grains must be properly dried to avoid spoilage, harmful mycotoxins from mold, and financial loss. Smallholder farmers can thus greatly benefit from a means to assess Moisture Content (MC) in their grain. We describe a two-step algorithm, with very low computational cost, that calculates MC with high accuracy, using Relative Humidity (RH) and Temperature (T) time-series. The time-series do not need to reach equilibrium state, enabling fast (12-minute) time-to-result. The algorithm first curve-fits the RH time-series to estimate asymptotic RH, in order to leverage the physics of the RH-T-MC equilibrium relationship. It then uses regression to estimate MC to within ±1% on ≥95% of samples over a wide range of ambient RH-T conditions, on both Lab and Field samples of 10 different grains.
利用相对湿度时间序列预测粮食含水率的算法
保守估计,在许多国家,粮食作物收获后损失为10-20%(最高可达40%)。特别是,谷物必须适当干燥,以避免变质、霉菌产生的有害真菌毒素和经济损失。因此,小农可以从一种评估其粮食水分含量(MC)的方法中大大受益。我们描述了一种计算成本非常低的两步算法,该算法使用相对湿度(RH)和温度(T)时间序列计算MC的精度很高。时间序列不需要达到平衡状态,实现快速(12分钟)的时间到结果。该算法首先对RH时间序列进行曲线拟合,以估计渐近RH,以便利用RH- t - mc平衡关系的物理特性。然后,在实验室和现场10种不同颗粒的样品中,在大范围的RH-T环境条件下,使用回归估计≥95%的样品的MC在±1%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信