Factorized Sparse Approximate Inverse Preconditioning II: Solution of 3D FE Systems on Massively Parallel Computers

L. Kolotilina, A. Yeremin
{"title":"Factorized Sparse Approximate Inverse Preconditioning II: Solution of 3D FE Systems on Massively Parallel Computers","authors":"L. Kolotilina, A. Yeremin","doi":"10.1142/S0129053395000117","DOIUrl":null,"url":null,"abstract":"An iterative method for solving large linear systems with sparse symmetric positive definite matrices on massively parallel computers is suggested. The method is based on the Factorized Sparse Approximate Inverse (FSAI) preconditioning of ‘parallel’ CG iterations. Efficiency of a concurrent implementation of the FSAI-CG iterations is analyzed for a model hypercube, and an estimate of the optimal hypercube dimension is derived. For finite element applications, two strategies for selecting the preconditioner sparsity pattern are suggested. A high convergence rate of the resulting iterations is demonstrated numerically for the 3D equilibrium equations for linear elastic orthotropic materials approximated using both h- and p-versions of the FEM.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129053395000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

Abstract

An iterative method for solving large linear systems with sparse symmetric positive definite matrices on massively parallel computers is suggested. The method is based on the Factorized Sparse Approximate Inverse (FSAI) preconditioning of ‘parallel’ CG iterations. Efficiency of a concurrent implementation of the FSAI-CG iterations is analyzed for a model hypercube, and an estimate of the optimal hypercube dimension is derived. For finite element applications, two strategies for selecting the preconditioner sparsity pattern are suggested. A high convergence rate of the resulting iterations is demonstrated numerically for the 3D equilibrium equations for linear elastic orthotropic materials approximated using both h- and p-versions of the FEM.
因式稀疏近似逆预处理II:大规模并行计算机上三维有限元系统的解
提出了一种在大规模并行计算机上求解具有稀疏对称正定矩阵的大型线性系统的迭代方法。该方法基于“并行”CG迭代的分解稀疏近似逆(FSAI)预处理。针对模型超立方体分析了FSAI-CG迭代并行实现的效率,并给出了最优超立方体维数的估计。对于有限元应用,提出了两种选择预条件稀疏模式的策略。数值结果表明,采用h-和p-两种有限元方法近似得到的线性弹性正交各向异性材料的三维平衡方程具有较高的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信