M. Sanytsky, Тetiana Kropyvnytska, Orest Shyiko, Yurii Bobetskyi, Andriy Volianiuk
{"title":"High strength steel fiber reinforced concrete for fortification protected structures","authors":"M. Sanytsky, Тetiana Kropyvnytska, Orest Shyiko, Yurii Bobetskyi, Andriy Volianiuk","doi":"10.23939/jtbp2023.01.037","DOIUrl":null,"url":null,"abstract":"The article presents the results of research on modified steel fiber-reinforced concrete and shows the expediency of their use to increase the effectiveness of fortification protection structures against shock loads. It was established that according to the results of tests of compressive strength (fсm = 79.4 MPa) and tensile strength during bending (fс, lf = 7.4 MPa), steel fiber-reinforced concrete can be classified as high-strength (strength class C 50/60) and rapid-hardening (fcm2/ fcm28 = 0.57) in accordance with DSTU EN 206:2018. Manufacturing in factory conditions of reinforced concrete elements of structures based on high-strength steel fiber-reinforced concrete with increased resistance to various types of force effects during shelling will allow to obtain quick-assembling/quick-dismantling fortification structures that will be able to provide protection for the personnel of the units of the armed forces of Ukraine.","PeriodicalId":369033,"journal":{"name":"Theory and Building Practice","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Building Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/jtbp2023.01.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The article presents the results of research on modified steel fiber-reinforced concrete and shows the expediency of their use to increase the effectiveness of fortification protection structures against shock loads. It was established that according to the results of tests of compressive strength (fсm = 79.4 MPa) and tensile strength during bending (fс, lf = 7.4 MPa), steel fiber-reinforced concrete can be classified as high-strength (strength class C 50/60) and rapid-hardening (fcm2/ fcm28 = 0.57) in accordance with DSTU EN 206:2018. Manufacturing in factory conditions of reinforced concrete elements of structures based on high-strength steel fiber-reinforced concrete with increased resistance to various types of force effects during shelling will allow to obtain quick-assembling/quick-dismantling fortification structures that will be able to provide protection for the personnel of the units of the armed forces of Ukraine.