Architecting Malleable MPI Applications for Priority-driven Adaptive Scheduling

Pierre Lemarinier, K. Hasanov, S. Venugopal, K. Katrinis
{"title":"Architecting Malleable MPI Applications for Priority-driven Adaptive Scheduling","authors":"Pierre Lemarinier, K. Hasanov, S. Venugopal, K. Katrinis","doi":"10.1145/2966884.2966907","DOIUrl":null,"url":null,"abstract":"Future supercomputers will need to support both traditional HPC applications and Big Data/High Performance Analysis applications seamlessly in a common environment. This motivates traditional job scheduling systems to support malleable jobs along with allocations that can dynamically change in size, in order to adapt the amount of resources to the actual current need of the different applications. It also calls for future innovative HPC applications to adapt to this environment, and provide some level of malleability for releasing underutilized resources to other tasks. In this paper, we present and compare two different methodologies to support such malleable MPI applications: 1)using checkpoint/restart and the SCR library, and 2) using dynamic data redistribution and the ULFM API and runtime. We examine their effects on application execution times as well as their impact on resource management.","PeriodicalId":264069,"journal":{"name":"Proceedings of the 23rd European MPI Users' Group Meeting","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd European MPI Users' Group Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2966884.2966907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Future supercomputers will need to support both traditional HPC applications and Big Data/High Performance Analysis applications seamlessly in a common environment. This motivates traditional job scheduling systems to support malleable jobs along with allocations that can dynamically change in size, in order to adapt the amount of resources to the actual current need of the different applications. It also calls for future innovative HPC applications to adapt to this environment, and provide some level of malleability for releasing underutilized resources to other tasks. In this paper, we present and compare two different methodologies to support such malleable MPI applications: 1)using checkpoint/restart and the SCR library, and 2) using dynamic data redistribution and the ULFM API and runtime. We examine their effects on application execution times as well as their impact on resource management.
为优先级驱动的自适应调度构建可伸缩MPI应用程序
未来的超级计算机需要在一个共同的环境中无缝地支持传统的HPC应用程序和大数据/高性能分析应用程序。这促使传统的作业调度系统支持可伸缩的作业以及可以动态改变大小的分配,以便使资源量适应不同应用程序的实际当前需求。它还要求未来创新的HPC应用程序适应这种环境,并提供一定程度的延展性,以便将未充分利用的资源释放给其他任务。在本文中,我们提出并比较了两种不同的方法来支持这种可扩展的MPI应用程序:1)使用检查点/重新启动和SCR库,以及2)使用动态数据重新分配和ULFM API和运行时。我们将研究它们对应用程序执行时间的影响以及它们对资源管理的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信