Algorithmic Arithmetics with DD-Finite Functions

Antonio Jiménez-Pastor, V. Pillwein
{"title":"Algorithmic Arithmetics with DD-Finite Functions","authors":"Antonio Jiménez-Pastor, V. Pillwein","doi":"10.1145/3208976.3209009","DOIUrl":null,"url":null,"abstract":"Many special functions as well as generating functions of combinatorial sequences that arise in applications are D-finite, i.e., they satisfy a linear differential equation with polynomial coefficients. These functions have been studied for centuries and over the past decades various computer algebra methods have been developed and implemented for D-finite functions. Recently, we have extended this notion to DD-finite functions (functions satisfying linear differential equations with D-finite functions coefficients). Numerous identities for D-finite functions can be proven automatically using closure properties. These closure properties can be shown to hold for DD-finite functions as well. In this paper, we present the algorithmic aspect of these closure properties, discuss issues related to implementation and give several examples.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3209009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Many special functions as well as generating functions of combinatorial sequences that arise in applications are D-finite, i.e., they satisfy a linear differential equation with polynomial coefficients. These functions have been studied for centuries and over the past decades various computer algebra methods have been developed and implemented for D-finite functions. Recently, we have extended this notion to DD-finite functions (functions satisfying linear differential equations with D-finite functions coefficients). Numerous identities for D-finite functions can be proven automatically using closure properties. These closure properties can be shown to hold for DD-finite functions as well. In this paper, we present the algorithmic aspect of these closure properties, discuss issues related to implementation and give several examples.
具有dd有限函数的算法算术
应用中出现的组合序列的许多特殊函数和生成函数都是d有限的,即它们满足多项式系数的线性微分方程。这些函数已经研究了几个世纪,在过去的几十年里,各种计算机代数方法已经开发并实现了d有限函数。最近,我们将这一概念推广到d -有限函数(d -有限函数系数满足线性微分方程的函数)。许多d有限函数的恒等式可以用闭包性质自动证明。这些闭包属性也适用于dd有限函数。在本文中,我们提出了这些闭包属性的算法方面,讨论了与实现相关的问题,并给出了几个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信