Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study

G. P. R. Álvarez, Per-Olov Östberg, E. Elmroth, K. Antypas, R. Gerber, L. Ramakrishnan
{"title":"Towards Understanding Job Heterogeneity in HPC: A NERSC Case Study","authors":"G. P. R. Álvarez, Per-Olov Östberg, E. Elmroth, K. Antypas, R. Gerber, L. Ramakrishnan","doi":"10.1109/CCGrid.2016.32","DOIUrl":null,"url":null,"abstract":"The high performance computing (HPC) scheduling landscape is changing. Increasingly, there are large scientific computations that include high-throughput, data-intensive, and stream-processing compute models. These jobs increase the workload heterogeneity, which presents challenges for classical tightly coupled MPI job oriented HPC schedulers. Thus, it is important to define new analyses methods to understand the heterogeneity of the workload, and its possible effect on the performance of current systems. In this paper, we present a methodology to assess the job heterogeneity in workloads and scheduling queues. We apply the method on the workloads of three current National Energy Research Scientific Computing Center (NERSC) systems in 2014. Finally, we present the results of such analysis, with an observation that heterogeneity might reduce predictability in the jobs' wait time.","PeriodicalId":103641,"journal":{"name":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2016.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

The high performance computing (HPC) scheduling landscape is changing. Increasingly, there are large scientific computations that include high-throughput, data-intensive, and stream-processing compute models. These jobs increase the workload heterogeneity, which presents challenges for classical tightly coupled MPI job oriented HPC schedulers. Thus, it is important to define new analyses methods to understand the heterogeneity of the workload, and its possible effect on the performance of current systems. In this paper, we present a methodology to assess the job heterogeneity in workloads and scheduling queues. We apply the method on the workloads of three current National Energy Research Scientific Computing Center (NERSC) systems in 2014. Finally, we present the results of such analysis, with an observation that heterogeneity might reduce predictability in the jobs' wait time.
理解高性能计算中的工作异质性:NERSC案例研究
高性能计算(HPC)调度格局正在发生变化。越来越多的大型科学计算包括高吞吐量、数据密集型和流处理计算模型。这些作业增加了工作负载的异构性,这对传统的面向紧耦合MPI作业的HPC调度器提出了挑战。因此,定义新的分析方法来理解工作负载的异质性及其对当前系统性能的可能影响是很重要的。在本文中,我们提出了一种评估工作负载和调度队列中的作业异质性的方法。我们将该方法应用于2014年国家能源研究科学计算中心(NERSC)三个现有系统的工作负荷。最后,我们提出了这样的分析结果,并观察到异质性可能会降低工作等待时间的可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信