K. Ratheesh, K. Rajeev, Jyothika S, Athira B Menon, Rahul Krishnan Pathinarupothi
{"title":"Open Tool-kit for AI-based Sleep Apnea Scoring","authors":"K. Ratheesh, K. Rajeev, Jyothika S, Athira B Menon, Rahul Krishnan Pathinarupothi","doi":"10.1109/INCET57972.2023.10170040","DOIUrl":null,"url":null,"abstract":"Sleep is the most essential and fundamental to an individual’s well-being and vitality because it provides for the restoration and re-energizing of both the body and mind. Sleep apnea is a common sleep problem that affects millions of individuals worldwide. It is distinguished by breathing pauses or shallow breathing during sleeping, which can result in a variety of health problems such as heart disease, stroke, and diabetes [1]. Sleep apnea diagnosis and management can be difficult because the cost and time-consuming polysomnography (PSG) testing requires specialized equipment and trained personnel. To address these concerns, we created and validated an artificial intelligence (AI)-based sleep apnea scoring system that analyses electrocardiogram (ECG) signals to predict the severity of sleep apnea. The system analyses ECG signals using 1D-CNN to predict the Apnea-Hypopnea Index (AHI), a measure of the severity of sleep apnea. The tool is organized into three sections: data exploration, data visualization, and prediction, and it is aimed at accurately forecasting patients’ risk of sleep apnea. Our research demonstrates the potential of AI-based approaches for the diagnosis and management of sleep apnea, and we believe that our system can help improve patient outcomes and quality of life.","PeriodicalId":403008,"journal":{"name":"2023 4th International Conference for Emerging Technology (INCET)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCET57972.2023.10170040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep is the most essential and fundamental to an individual’s well-being and vitality because it provides for the restoration and re-energizing of both the body and mind. Sleep apnea is a common sleep problem that affects millions of individuals worldwide. It is distinguished by breathing pauses or shallow breathing during sleeping, which can result in a variety of health problems such as heart disease, stroke, and diabetes [1]. Sleep apnea diagnosis and management can be difficult because the cost and time-consuming polysomnography (PSG) testing requires specialized equipment and trained personnel. To address these concerns, we created and validated an artificial intelligence (AI)-based sleep apnea scoring system that analyses electrocardiogram (ECG) signals to predict the severity of sleep apnea. The system analyses ECG signals using 1D-CNN to predict the Apnea-Hypopnea Index (AHI), a measure of the severity of sleep apnea. The tool is organized into three sections: data exploration, data visualization, and prediction, and it is aimed at accurately forecasting patients’ risk of sleep apnea. Our research demonstrates the potential of AI-based approaches for the diagnosis and management of sleep apnea, and we believe that our system can help improve patient outcomes and quality of life.