Potential Singularity Formation of Incompressible Axisymmetric Euler Equations with Degenerate Viscosity Coefficients

T. Hou, D. Huang
{"title":"Potential Singularity Formation of Incompressible Axisymmetric Euler Equations with Degenerate Viscosity Coefficients","authors":"T. Hou, D. Huang","doi":"10.1137/22m1470906","DOIUrl":null,"url":null,"abstract":"In this paper, we present strong numerical evidences that the incompressible axisymmetric Euler equations with degenerate viscosity coefficients and smooth initial data of finite energy develop a potential finite-time locally self-similar singularity at the origin. An important feature of this potential singularity is that the solution develops a two-scale traveling wave that travels towards the origin. The two-scale feature is characterized by the scaling property that the center of the traveling wave is located at a ring of radius $O((T-t)^{1/2})$ surrounding the symmetry axis while the thickness of the ring collapses at a rate $O(T-t)$. The driving mechanism for this potential singularity is due to an antisymmetric vortex dipole that generates a strong shearing layer in both the radial and axial velocity fields. Without the viscous regularization, the $3$D Euler equations develop a sharp front and some shearing instability in the far field. On the other hand, the Navier-Stokes equations with a constant viscosity coefficient regularize the two-scale solution structure and do not develop a finite-time singularity for the same initial data.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1470906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present strong numerical evidences that the incompressible axisymmetric Euler equations with degenerate viscosity coefficients and smooth initial data of finite energy develop a potential finite-time locally self-similar singularity at the origin. An important feature of this potential singularity is that the solution develops a two-scale traveling wave that travels towards the origin. The two-scale feature is characterized by the scaling property that the center of the traveling wave is located at a ring of radius $O((T-t)^{1/2})$ surrounding the symmetry axis while the thickness of the ring collapses at a rate $O(T-t)$. The driving mechanism for this potential singularity is due to an antisymmetric vortex dipole that generates a strong shearing layer in both the radial and axial velocity fields. Without the viscous regularization, the $3$D Euler equations develop a sharp front and some shearing instability in the far field. On the other hand, the Navier-Stokes equations with a constant viscosity coefficient regularize the two-scale solution structure and do not develop a finite-time singularity for the same initial data.
具有退化黏度系数的不可压缩轴对称欧拉方程的势奇异形成
本文给出了具有退化黏度系数和有限能量光滑初始数据的不可压缩轴对称欧拉方程在原点处具有潜在的有限时间局部自相似奇点的强有力的数值证据。这个潜在奇点的一个重要特征是,解产生了一个向原点传播的双尺度行波。双尺度特征的标度特性是行波的中心位于围绕对称轴的半径为$O((T-t)^{1/2})$的环上,而环的厚度以$O(T-t)$的速率崩塌。这种潜在奇点的驱动机制是由于一个反对称涡旋偶极子在径向和轴向速度场中都产生了一个强剪切层。在没有进行粘性正则化的情况下,3 D欧拉方程在远场呈现出尖锐的锋面和一定程度的剪切不稳定性。另一方面,具有恒定黏度系数的Navier-Stokes方程使双尺度解结构正则化,并且对相同的初始数据不产生有限时间奇点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信