Deriving Drought Vulnerability Index using Geographically Weighted Principal Component Analysis (GWPCA) and K-Means Clustering for Nile Basin

S. Perera, M. Allali, Erik J. Linstead, H. El-Askary
{"title":"Deriving Drought Vulnerability Index using Geographically Weighted Principal Component Analysis (GWPCA) and K-Means Clustering for Nile Basin","authors":"S. Perera, M. Allali, Erik J. Linstead, H. El-Askary","doi":"10.1109/IGARSS46834.2022.9883425","DOIUrl":null,"url":null,"abstract":"Climate impacts are particularly noticeable for the nations that share the Nile basin with an increase in hotter temperatures and fluctuating precipitation which expands natural catastrophes. Provincial work is required to precisely predict floods and dry seasons, thus preparing, and adapting to climatic events to build climate resilience among these Nile basin nations. In this context, an index indicating vulnerability to drought is derived for the Nile basin using Geographically Weighted Principal Component Analysis (GWPCA) and K-means clustering. Several climate indicators images related to atmosphere, land, and ocean are collected to build clusters categorized as high, mild, and low drought risk. Additionally, STL decomposition is conducted for the Palmer Drought Severity Index (PDSI) using time series data from 2010–2020 for the Nile basin to identify exceptional drought events for the past decade. Furthermore, correlations among PDSI and other climate indicators are analyzed using time series.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Climate impacts are particularly noticeable for the nations that share the Nile basin with an increase in hotter temperatures and fluctuating precipitation which expands natural catastrophes. Provincial work is required to precisely predict floods and dry seasons, thus preparing, and adapting to climatic events to build climate resilience among these Nile basin nations. In this context, an index indicating vulnerability to drought is derived for the Nile basin using Geographically Weighted Principal Component Analysis (GWPCA) and K-means clustering. Several climate indicators images related to atmosphere, land, and ocean are collected to build clusters categorized as high, mild, and low drought risk. Additionally, STL decomposition is conducted for the Palmer Drought Severity Index (PDSI) using time series data from 2010–2020 for the Nile basin to identify exceptional drought events for the past decade. Furthermore, correlations among PDSI and other climate indicators are analyzed using time series.
基于地理加权主成分分析和k -均值聚类的尼罗河流域干旱易损性指数
气候变化对尼罗河流域国家的影响尤为明显,气温升高,降水波动,自然灾害增加。省级工作需要精确预测洪水和旱季,从而准备和适应气候事件,在这些尼罗河流域国家建立气候适应能力。在这种情况下,利用地理加权主成分分析(GWPCA)和K-means聚类得出了尼罗河流域干旱脆弱性指数。收集了与大气、陆地和海洋相关的若干气候指标图像,构建了高、温和和低干旱风险的集群。此外,利用2010-2020年尼罗河流域的时间序列数据,对帕尔默干旱严重指数(PDSI)进行STL分解,以确定过去十年的异常干旱事件。此外,利用时间序列分析了PDSI与其他气候指标之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信