{"title":"A Unified Method Based on Wavelet Transform and C-V Model for Crack Segmentation of 3D Industrial CT Images","authors":"Linghui Liu, Li Zeng, B. Bi","doi":"10.1109/ICIG.2011.25","DOIUrl":null,"url":null,"abstract":"Accurate segmentation of cracked body from three-dimensional (3D) industrial Computed Tomography (CT) images is an important step in the process of crack measurement and automatic recognition. In this paper we present a fast method for the segmentation of cracked body. The improved algorithm incorporates wavelet transform and Chan and Vese (C-V) model as key components. The 3D wavelet transform is applied for detecting rough edges. Then region growing is used to find a suitable region which contains cracked body. Based on the resulting volume data, 3D C-V model is used to capture the edges of cracked body. The improved method can locate rough regions by using wavelet modulus maxima, which not only reduces the amount of data C-V model processed, but also provides initial contour surface that can accelerate the convergence speed of C-V model. Experimental results illustrate our method can accurately detect the cracked surface, as well as give computational savings of segmentation which satisfy the demand of defects detection of industrial CT.","PeriodicalId":277974,"journal":{"name":"2011 Sixth International Conference on Image and Graphics","volume":"2 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Sixth International Conference on Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIG.2011.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Accurate segmentation of cracked body from three-dimensional (3D) industrial Computed Tomography (CT) images is an important step in the process of crack measurement and automatic recognition. In this paper we present a fast method for the segmentation of cracked body. The improved algorithm incorporates wavelet transform and Chan and Vese (C-V) model as key components. The 3D wavelet transform is applied for detecting rough edges. Then region growing is used to find a suitable region which contains cracked body. Based on the resulting volume data, 3D C-V model is used to capture the edges of cracked body. The improved method can locate rough regions by using wavelet modulus maxima, which not only reduces the amount of data C-V model processed, but also provides initial contour surface that can accelerate the convergence speed of C-V model. Experimental results illustrate our method can accurately detect the cracked surface, as well as give computational savings of segmentation which satisfy the demand of defects detection of industrial CT.