Optimisation of System Throughput Exploiting Tasks Heterogeneity on Space Shared FPGAs

U. Minhas, R. Woods, G. Karakonstantis
{"title":"Optimisation of System Throughput Exploiting Tasks Heterogeneity on Space Shared FPGAs","authors":"U. Minhas, R. Woods, G. Karakonstantis","doi":"10.1109/ICFPT47387.2019.00067","DOIUrl":null,"url":null,"abstract":"There are challenges in optimising system throughput in FPGA-based cloud computing due to mapping constraints resulting in suboptimal space sharing of resources, as the number of tasks grow and become more heterogeneous. This work proposes a methodology for exploring and optimising their resource utilisation. By identifying high-level synthesis parameters for each task, machine learning models and intelligent clustering are then employed to define clusters of tasks which will share the FPGA space. Assuming heterogeneity characterisation of tasks and thus static partitioning of the FPGA, it is ensured that each task in a cluster accommodates other tasks' resource requirements resulting in a higher compute density. Using 11 high performance computing tasks, we achieve an average 3.3× higher system throughput at 2.8× better energy efficiency when compared to existing approaches.","PeriodicalId":241340,"journal":{"name":"2019 International Conference on Field-Programmable Technology (ICFPT)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT47387.2019.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

There are challenges in optimising system throughput in FPGA-based cloud computing due to mapping constraints resulting in suboptimal space sharing of resources, as the number of tasks grow and become more heterogeneous. This work proposes a methodology for exploring and optimising their resource utilisation. By identifying high-level synthesis parameters for each task, machine learning models and intelligent clustering are then employed to define clusters of tasks which will share the FPGA space. Assuming heterogeneity characterisation of tasks and thus static partitioning of the FPGA, it is ensured that each task in a cluster accommodates other tasks' resource requirements resulting in a higher compute density. Using 11 high performance computing tasks, we achieve an average 3.3× higher system throughput at 2.8× better energy efficiency when compared to existing approaches.
利用空间共享fpga的任务异构性优化系统吞吐量
在基于fpga的云计算中,由于映射约束导致资源的次优空间共享,因此在优化系统吞吐量方面存在挑战,因为任务数量增加并且变得更加异构。这项工作提出了一种探索和优化其资源利用的方法。通过识别每个任务的高级综合参数,然后使用机器学习模型和智能聚类来定义将共享FPGA空间的任务集群。假设任务的异构特性和FPGA的静态分区,可以确保集群中的每个任务都能满足其他任务的资源需求,从而提高计算密度。与现有方法相比,使用11个高性能计算任务,我们实现了平均3.3倍的系统吞吐量和2.8倍的能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信