Numerical approach to predict power device reliability

A. Sitta, S. Russo, G. Bazzano, D. Cavallaro, G. Greco, M. Calabretta
{"title":"Numerical approach to predict power device reliability","authors":"A. Sitta, S. Russo, G. Bazzano, D. Cavallaro, G. Greco, M. Calabretta","doi":"10.1109/DTIS.2018.8368577","DOIUrl":null,"url":null,"abstract":"The scope of this paper is to work out a predictive method to estimate the power device reliability under active cycle tests. The proposed method is able to predict, through a numerical model, the local maximum temperature during test. The results validation has been pursued correlating the numerical thermal maps results with the experimental temperature distribution obtained from an infra-red camera. Front metal ratcheting has been recognized as the main root cause of contact resistance degradation during the considered reliability test (Repetitive Avalanche). This failure mode is dependent on the temperature variation for cycle, by which it is possible to predict the device lifetime according to the Coffin-Manson fatigue model.","PeriodicalId":328650,"journal":{"name":"2018 13th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th International Conference on Design & Technology of Integrated Systems In Nanoscale Era (DTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIS.2018.8368577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The scope of this paper is to work out a predictive method to estimate the power device reliability under active cycle tests. The proposed method is able to predict, through a numerical model, the local maximum temperature during test. The results validation has been pursued correlating the numerical thermal maps results with the experimental temperature distribution obtained from an infra-red camera. Front metal ratcheting has been recognized as the main root cause of contact resistance degradation during the considered reliability test (Repetitive Avalanche). This failure mode is dependent on the temperature variation for cycle, by which it is possible to predict the device lifetime according to the Coffin-Manson fatigue model.
电力设备可靠性预测的数值方法
本文的研究范围是建立一种预测方法来估计电力设备在主动循环试验下的可靠性。该方法能够通过数值模型预测试验过程中局部的最高温度。将数值热图结果与红外摄像机实测温度分布进行对比验证。在可靠性测试(重复性雪崩)中,前金属棘轮被认为是接触电阻退化的主要根本原因。这种失效模式依赖于循环温度的变化,从而可以根据Coffin-Manson疲劳模型预测设备的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信