Artificial Neural Network Modeling to Predict the Moisture Removal Rate of a Desiccant Liquid Dehumidifier System

Fatih Bouzeffour, B. Djelloul
{"title":"Artificial Neural Network Modeling to Predict the Moisture Removal Rate of a Desiccant Liquid Dehumidifier System","authors":"Fatih Bouzeffour, B. Djelloul","doi":"10.1109/IRSEC.2018.8702825","DOIUrl":null,"url":null,"abstract":"In this study, an artificial neural network model is developed in order to predict the moister removal rate by a desiccant liquid dehumidifier system. This last can be used for air conditioning; it consists mainly of a dehumidifier, a regenerator, and a liquid desiccant. Using a MATLAB® environment, the developed neural network model is based on the multilayer perceptron that includes an input layer, a hidden layer, and an output layer. The network input parameters are ambient air temperature, liquid desiccant temperature, air flow rate, liquid flow rate, air humidity ratio, and liquid concentration. The network output includes one variable which is the moister removal rate. The values predicted by the model are in a good agreement with the experimental data, with mean square error (MSE) of 0.0849 and correlation coefficient (R) of 0.985for all datasets. The used neural network provides a high accuracy optimization and reliability of the method to predict the performance of a liquid desiccant dehumidifier.","PeriodicalId":186042,"journal":{"name":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Renewable and Sustainable Energy Conference (IRSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRSEC.2018.8702825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, an artificial neural network model is developed in order to predict the moister removal rate by a desiccant liquid dehumidifier system. This last can be used for air conditioning; it consists mainly of a dehumidifier, a regenerator, and a liquid desiccant. Using a MATLAB® environment, the developed neural network model is based on the multilayer perceptron that includes an input layer, a hidden layer, and an output layer. The network input parameters are ambient air temperature, liquid desiccant temperature, air flow rate, liquid flow rate, air humidity ratio, and liquid concentration. The network output includes one variable which is the moister removal rate. The values predicted by the model are in a good agreement with the experimental data, with mean square error (MSE) of 0.0849 and correlation coefficient (R) of 0.985for all datasets. The used neural network provides a high accuracy optimization and reliability of the method to predict the performance of a liquid desiccant dehumidifier.
用人工神经网络模型预测干燥剂液体除湿机系统的除湿率
本文建立了一种人工神经网络模型来预测干燥剂液体除湿系统的除湿率。这最后一个可以用于空调;它主要由除湿器、蓄热器和液体干燥剂组成。使用MATLAB®环境,开发的神经网络模型基于多层感知器,包括输入层,隐藏层和输出层。网络输入参数包括环境空气温度、液体干燥剂温度、空气流速、液体流速、空气湿度比和液体浓度。网络输出包含一个变量,即除湿率。模型预测值与实验数据吻合较好,各数据集的均方误差(MSE)为0.0849,相关系数(R)为0.985。所采用的神经网络为液体除湿机性能预测提供了高精度、优化和可靠性的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信