Han Htoo Htoo Ko, Akira Tatsumi, K. Iijima, M. Fujikubo
{"title":"Collapse Analysis of Ship Hull Girder Using Hydro-Elastoplastic Beam Model: Part 2","authors":"Han Htoo Htoo Ko, Akira Tatsumi, K. Iijima, M. Fujikubo","doi":"10.1115/omae2020-19201","DOIUrl":null,"url":null,"abstract":"\n In Part 1 study, a time-domain collapse analysis method of ship hull girder was developed and named FE-Smith method. Hull girder was treated as elastoplastic beam model and Smith’s method was used for collapse analysis of cross sections. A concept of average stress-average plastic strain relationship was introduced so that nonlinear collapse behavior of members can be treated as pseudo strain-hardening/softening behavior. Fluid-structure interaction effects were considered. Uniform cross-section beam was assumed as a most fundamental study.\n In this Part 2, a container ship is taken as subject model. Not only FE-Smith analysis but also non-linear FE analyses using shell model for collapse parts are performed for comparison purpose. Two types of average stress-average strain curves are considered for FE-Smith analysis, i.e. obtained by Gordo-Soares formulae and by shell FEM. Applicability of FE-Smith method is examined comparing with more precise but time-consuming methods. Some parametric studies are also performed. Wave response will be reported in the next papers.","PeriodicalId":191387,"journal":{"name":"Volume 2B: Structures, Safety, and Reliability","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: Structures, Safety, and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-19201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In Part 1 study, a time-domain collapse analysis method of ship hull girder was developed and named FE-Smith method. Hull girder was treated as elastoplastic beam model and Smith’s method was used for collapse analysis of cross sections. A concept of average stress-average plastic strain relationship was introduced so that nonlinear collapse behavior of members can be treated as pseudo strain-hardening/softening behavior. Fluid-structure interaction effects were considered. Uniform cross-section beam was assumed as a most fundamental study.
In this Part 2, a container ship is taken as subject model. Not only FE-Smith analysis but also non-linear FE analyses using shell model for collapse parts are performed for comparison purpose. Two types of average stress-average strain curves are considered for FE-Smith analysis, i.e. obtained by Gordo-Soares formulae and by shell FEM. Applicability of FE-Smith method is examined comparing with more precise but time-consuming methods. Some parametric studies are also performed. Wave response will be reported in the next papers.