Generalized multiscale finite element method for highly heterogeneous compressible flow

Shubin Fu, Eric T. Chung, Lina Zhao
{"title":"Generalized multiscale finite element method for highly heterogeneous compressible flow","authors":"Shubin Fu, Eric T. Chung, Lina Zhao","doi":"10.1137/21m1438475","DOIUrl":null,"url":null,"abstract":"In this paper, we study the generalized multiscale finite element method (GMsFEM) for single phase compressible flow in highly heterogeneous porous media. We follow the major steps of the GMsFEM to construct permeability dependent offline basis for fast coarse-grid simulation. The offline coarse space is efficiently constructed only once based on the initial permeability field with parallel computing. A rigorous convergence analysis is performed for two types of snapshot spaces. The analysis indicates that the convergence rates of the proposed multiscale method depend on the coarse meshsize and the eigenvalue decay of the local spectral problem. To further increase the accuracy of multiscale method, residual driven online multiscale basis is added to the offline space. The construction of online multiscale basis is based on a carefully design error indicator motivated by the analysis. We find that online basis is particularly important for the singular source. Rich numerical tests on typical 3D highly heterogeneous medias are presented to demonstrate the impressive computational advantages of the proposed multiscale method.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1438475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we study the generalized multiscale finite element method (GMsFEM) for single phase compressible flow in highly heterogeneous porous media. We follow the major steps of the GMsFEM to construct permeability dependent offline basis for fast coarse-grid simulation. The offline coarse space is efficiently constructed only once based on the initial permeability field with parallel computing. A rigorous convergence analysis is performed for two types of snapshot spaces. The analysis indicates that the convergence rates of the proposed multiscale method depend on the coarse meshsize and the eigenvalue decay of the local spectral problem. To further increase the accuracy of multiscale method, residual driven online multiscale basis is added to the offline space. The construction of online multiscale basis is based on a carefully design error indicator motivated by the analysis. We find that online basis is particularly important for the singular source. Rich numerical tests on typical 3D highly heterogeneous medias are presented to demonstrate the impressive computational advantages of the proposed multiscale method.
高非均质可压缩流动的广义多尺度有限元方法
本文研究了高度非均质多孔介质中单相可压缩流动的广义多尺度有限元方法。我们遵循GMsFEM的主要步骤,构建基于渗透率的离线基,用于快速粗网格模拟。基于初始磁导率场,采用并行计算方法,只需一次有效地构造离线粗空间。对两类快照空间进行了严格的收敛性分析。分析表明,所提出的多尺度方法的收敛速度取决于粗糙网格大小和局部谱问题的特征值衰减。为了进一步提高多尺度方法的精度,在离线空间中加入残差驱动的在线多尺度基。在线多尺度基础的构建是在分析的基础上精心设计误差指标。我们发现在线基对奇异源尤为重要。在典型的三维高度非均匀介质上进行了丰富的数值试验,以证明所提出的多尺度方法的计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信