Approaches to improve performance for history-based branch predictors

Tieling Xie, Y. Chu, J. H. Park
{"title":"Approaches to improve performance for history-based branch predictors","authors":"Tieling Xie, Y. Chu, J. H. Park","doi":"10.1109/PACRIM.2005.1517240","DOIUrl":null,"url":null,"abstract":"This paper investigates the aliasing problems in global-history-based and local-history-based branch predictors and presents two approaches to improve the performance of global-history-based branch predictors. Global-history-based predictors have more critical aliasing problems but show the better performance than local-history-based predictors. Therefore, our approaches mainly focus on alleviating the aliasing problems for global-history-based predictors. The performance of each approach is evaluated and compared by using the Simplescalar simulator with SPEC95CINT benchmark programs. Our experimental results show that the approaches outperform conventional global-history-based branch predictors.","PeriodicalId":346880,"journal":{"name":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2005.1517240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the aliasing problems in global-history-based and local-history-based branch predictors and presents two approaches to improve the performance of global-history-based branch predictors. Global-history-based predictors have more critical aliasing problems but show the better performance than local-history-based predictors. Therefore, our approaches mainly focus on alleviating the aliasing problems for global-history-based predictors. The performance of each approach is evaluated and compared by using the Simplescalar simulator with SPEC95CINT benchmark programs. Our experimental results show that the approaches outperform conventional global-history-based branch predictors.
改进基于历史的分支预测器性能的方法
研究了基于全局历史和局部历史的分支预测器中的混叠问题,提出了两种改进全局历史分支预测器性能的方法。基于全局历史的预测器存在更严重的混叠问题,但表现出比基于局部历史的预测器更好的性能。因此,我们的方法主要侧重于缓解基于全球历史的预测器的混叠问题。使用Simplescalar模拟器和SPEC95CINT基准程序对每种方法的性能进行了评估和比较。实验结果表明,该方法优于传统的基于全局历史的分支预测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信