Universal syllable tokeniser for language identification

S. Dey, H. Murthy
{"title":"Universal syllable tokeniser for language identification","authors":"S. Dey, H. Murthy","doi":"10.1109/NCC.2012.6176747","DOIUrl":null,"url":null,"abstract":"Phone recognition followed by language modeling gives good performance for language identification (LID). The requirement of labeled speech corpora makes it less appealing to build LID system. An alternative scalable approach is to build LID system that does not require annotated speech database. In this paper, we have compared two such LID systems namely Gaussian Mixture Model (GMM) tokeniser and syllable based LID system. The phonotactics of GMM and syllable based system are captured by GMM cluster indices and syllable tokens respectively. We propose the use of universal syllable models in building the LID systems and then deriving the uni-gram syllable statistics from this model. Experimental results on the OGI 1992 multilingual speech corpus show that syllable based LID system performs significantly better than the GMM Tokeniser system.","PeriodicalId":178278,"journal":{"name":"2012 National Conference on Communications (NCC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2012.6176747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phone recognition followed by language modeling gives good performance for language identification (LID). The requirement of labeled speech corpora makes it less appealing to build LID system. An alternative scalable approach is to build LID system that does not require annotated speech database. In this paper, we have compared two such LID systems namely Gaussian Mixture Model (GMM) tokeniser and syllable based LID system. The phonotactics of GMM and syllable based system are captured by GMM cluster indices and syllable tokens respectively. We propose the use of universal syllable models in building the LID systems and then deriving the uni-gram syllable statistics from this model. Experimental results on the OGI 1992 multilingual speech corpus show that syllable based LID system performs significantly better than the GMM Tokeniser system.
用于语言识别的通用音节标记器
电话识别和语言建模为语言识别提供了良好的性能。对标注语音语料库的要求降低了构建LID系统的吸引力。另一种可扩展的方法是构建不需要注释语音数据库的LID系统。在本文中,我们比较了两种这样的LID系统,即高斯混合模型(GMM)标记器和基于音节的LID系统。GMM的语音策略和基于音节的语音策略分别由GMM聚类索引和音节标记捕获。我们建议使用通用音节模型来构建LID系统,然后从该模型中得到单位字母的音节统计。在OGI 1992多语言语料库上的实验结果表明,基于音节的LID系统的性能明显优于GMM Tokeniser系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信