Thermoelectric properties of CoSb3 prepared by copper mold quenching technique

H. Nakagawa, H. Tanaka, A. Kasama, K. Miyamura, H. Masumoto, K. Matsubara
{"title":"Thermoelectric properties of CoSb3 prepared by copper mold quenching technique","authors":"H. Nakagawa, H. Tanaka, A. Kasama, K. Miyamura, H. Masumoto, K. Matsubara","doi":"10.1109/ICT.1996.553269","DOIUrl":null,"url":null,"abstract":"A novel technique to prepare CoSb/sub 3/ materials on a mass production level was studied. Co and Sb were melted together in an alumina crucible at 1373 K, and cast in a copper mold to solidify the melts. The obtained alloyed ingots consist of mainly three phases of CoSb/sub 3/, CoSb/sub 2/ and Sb. To react Sb with CoSb/sub 2/ and get a CoSb/sub 3/ single phase, the ingots were annealed at 823-1073 K. During the heat treatment, Sb and CoSb/sub 2/ phases changed to CoSb/sub 3/ phases and voids. The obtained CoSb/sub 3/ samples show n-type thermoelectric properties. Some factors affecting the properties, for example, Sb/Co atomic ratio, impurity content and density are discussed, based on the experimental data by X-ray diffractometry, optical microscopy, EPMA, chemical analysis and so on. On the other hand, an ingot was ground, mechanically alloyed and hot-pressed. The hot-pressed samples show p-type thermoelectric properties. Moreover, mechanical alloying is effective to reduce the thermal conductivity by refining the crystal grain size of CoSb/sub 3/. As a result, ZT value, 0.10 was obtained at a temperature of 669 K.","PeriodicalId":447328,"journal":{"name":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.1996.553269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A novel technique to prepare CoSb/sub 3/ materials on a mass production level was studied. Co and Sb were melted together in an alumina crucible at 1373 K, and cast in a copper mold to solidify the melts. The obtained alloyed ingots consist of mainly three phases of CoSb/sub 3/, CoSb/sub 2/ and Sb. To react Sb with CoSb/sub 2/ and get a CoSb/sub 3/ single phase, the ingots were annealed at 823-1073 K. During the heat treatment, Sb and CoSb/sub 2/ phases changed to CoSb/sub 3/ phases and voids. The obtained CoSb/sub 3/ samples show n-type thermoelectric properties. Some factors affecting the properties, for example, Sb/Co atomic ratio, impurity content and density are discussed, based on the experimental data by X-ray diffractometry, optical microscopy, EPMA, chemical analysis and so on. On the other hand, an ingot was ground, mechanically alloyed and hot-pressed. The hot-pressed samples show p-type thermoelectric properties. Moreover, mechanical alloying is effective to reduce the thermal conductivity by refining the crystal grain size of CoSb/sub 3/. As a result, ZT value, 0.10 was obtained at a temperature of 669 K.
铜模淬火工艺制备CoSb3的热电性能
研究了一种大规模制备CoSb/sub - 3/材料的新工艺。Co和Sb在1373 K的氧化铝坩埚中熔化在一起,并在铜模中铸造以使熔体凝固。得到的合金锭主要由CoSb/sub - 3/、CoSb/sub - 2/和Sb三相组成。为使Sb与CoSb/sub - 2/发生反应而得到CoSb/sub - 3/单相,将锭在823 ~ 1073 K下退火。在热处理过程中,Sb和CoSb/sub 2/相转变为CoSb/sub 3/相和空洞。得到的CoSb/ sub3 /样品具有n型热电性质。根据x射线衍射、光学显微镜、电子能谱分析、化学分析等实验数据,讨论了Sb/Co原子比、杂质含量、密度等因素对材料性能的影响。另一方面,锭被磨碎,机械合金化和热压。热压样品显示p型热电性能。此外,机械合金化可以通过细化CoSb/sub - 3/的晶粒尺寸来有效降低导热系数。结果表明,在669 K温度下,ZT值为0.10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信