Mining RFID Behavior Data using Unsupervised Learning

Guénaël Cabanes, Younès Bennani, D. Fresneau
{"title":"Mining RFID Behavior Data using Unsupervised Learning","authors":"Guénaël Cabanes, Younès Bennani, D. Fresneau","doi":"10.4018/jal.2010090203","DOIUrl":null,"url":null,"abstract":"Radio Frequency IDentification (RFID) is an advanced tracking technology that can be used to study the spatial organization of individual’s spatio-temporal activity. The aim of this work is firstly to build a new RFID-based autonomous system which can follow individuals’ spatio-temporal activity, a tool not currently available. Secondly, the authors aim to develop new tools for automatic data mining. In this paper, they study how to transform these data to investigate the division of labor, the intra-colonial cooperation and conflict in an ant colony. They also develop a new unsupervised learning data mining method (DS2L-SOM: Density based Simultaneous Two-Level - Self Organizing Map) to find homogeneous clusters (i.e., sets of individual which share a similar behavior). According to the experimental results, this method is very fast and efficient. It also allows a very useful visualization of the results.","PeriodicalId":443888,"journal":{"name":"Int. J. Appl. Logist.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Logist.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jal.2010090203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Radio Frequency IDentification (RFID) is an advanced tracking technology that can be used to study the spatial organization of individual’s spatio-temporal activity. The aim of this work is firstly to build a new RFID-based autonomous system which can follow individuals’ spatio-temporal activity, a tool not currently available. Secondly, the authors aim to develop new tools for automatic data mining. In this paper, they study how to transform these data to investigate the division of labor, the intra-colonial cooperation and conflict in an ant colony. They also develop a new unsupervised learning data mining method (DS2L-SOM: Density based Simultaneous Two-Level - Self Organizing Map) to find homogeneous clusters (i.e., sets of individual which share a similar behavior). According to the experimental results, this method is very fast and efficient. It also allows a very useful visualization of the results.
利用无监督学习挖掘RFID行为数据
射频识别(RFID)是一种先进的跟踪技术,可以用来研究个体时空活动的空间组织。这项工作的目的首先是建立一个新的基于rfid的自主系统,该系统可以跟踪个人的时空活动,这是目前尚不可用的工具。其次,作者的目标是开发新的自动数据挖掘工具。在本文中,他们研究了如何转换这些数据来研究蚁群中的劳动分工、群体内合作和冲突。他们还开发了一种新的无监督学习数据挖掘方法(DS2L-SOM:基于密度的同步两级自组织映射)来寻找同质集群(即具有相似行为的个体集合)。实验结果表明,该方法快速有效。它还允许对结果进行非常有用的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信