Smoothing Gene Expression Using Biological Networks

Yue Fan, M. Kon, Shinuk Kim, C. DeLisi
{"title":"Smoothing Gene Expression Using Biological Networks","authors":"Yue Fan, M. Kon, Shinuk Kim, C. DeLisi","doi":"10.1109/ICMLA.2010.85","DOIUrl":null,"url":null,"abstract":"Gene expression (micro array) data have been used widely in bioinformatics. The expression data of a large number of genes from small numbers of subjects are used to identify informative biomarkers that may predict or help in diagnosing some disorders. More recently, increasing amounts of information from underlying relationships of the expressed genes have become available, and workers have started to investigate algorithms which can use such a priori information to improve classification or regression based on gene expression. In this paper, we describe three novel machine learning algorithms for regularizing (smoothing) micro array expression values defined on gene sets with known prior network or metric structures, and which exploit this gene interaction information. These regularized expression values can be used with any machine classifier with the goal of better classification. In this paper, standard smoothing (denoising) techniques previously developed for functions on Euclidean spaces are extended to allow smoothing of micro array expression feature vectors using distance measures defined by biological networks. Such a priori smoothing (denoising) of the feature vectors using metrics on the index space (here the space of genes) yields better signal to noise ratios in the data. When tested on two breast cancer datasets, support vector machine classifiers trained on the smoothed expression values obtain better areas under ROC curves in two cancer datasets.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Gene expression (micro array) data have been used widely in bioinformatics. The expression data of a large number of genes from small numbers of subjects are used to identify informative biomarkers that may predict or help in diagnosing some disorders. More recently, increasing amounts of information from underlying relationships of the expressed genes have become available, and workers have started to investigate algorithms which can use such a priori information to improve classification or regression based on gene expression. In this paper, we describe three novel machine learning algorithms for regularizing (smoothing) micro array expression values defined on gene sets with known prior network or metric structures, and which exploit this gene interaction information. These regularized expression values can be used with any machine classifier with the goal of better classification. In this paper, standard smoothing (denoising) techniques previously developed for functions on Euclidean spaces are extended to allow smoothing of micro array expression feature vectors using distance measures defined by biological networks. Such a priori smoothing (denoising) of the feature vectors using metrics on the index space (here the space of genes) yields better signal to noise ratios in the data. When tested on two breast cancer datasets, support vector machine classifiers trained on the smoothed expression values obtain better areas under ROC curves in two cancer datasets.
利用生物网络平滑基因表达
基因表达(微阵列)数据在生物信息学中有着广泛的应用。来自少数受试者的大量基因的表达数据被用于识别可能预测或帮助诊断某些疾病的信息性生物标志物。最近,越来越多的来自表达基因的潜在关系的信息已经可用,并且工作者已经开始研究可以使用这种先验信息来改进基于基因表达的分类或回归的算法。在本文中,我们描述了三种新的机器学习算法,用于正则化(平滑)定义在具有已知先验网络或度量结构的基因集上的微阵列表达值,并利用这些基因相互作用信息。这些正则表达式值可以用于任何机器分类器,以实现更好的分类。在本文中,先前开发的用于欧几里得空间上的函数的标准平滑(去噪)技术被扩展到允许使用由生物网络定义的距离度量平滑微阵列表达特征向量。使用索引空间(这里是基因空间)上的度量对特征向量进行先验平滑(去噪),可以在数据中产生更好的信噪比。在两个乳腺癌数据集上进行测试时,在平滑表达值上训练的支持向量机分类器在两个癌症数据集的ROC曲线下获得了更好的面积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信