Supercritical Fluid Chromatography Coupled with Drift Time Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry as a Tool for Lipid Characterization of HepG2 Cells

O. Schmitz, Sven W. Meckelmann, Pia Wittenhofer, Kristina Tštsch
{"title":"Supercritical Fluid Chromatography Coupled with Drift Time Ion Mobility Quadrupole Time-of-Flight Mass Spectrometry as a Tool for Lipid Characterization of HepG2 Cells","authors":"O. Schmitz, Sven W. Meckelmann, Pia Wittenhofer, Kristina Tštsch","doi":"10.56530/lcgc.eu.xq5675w3","DOIUrl":null,"url":null,"abstract":"Lipidomic studies are often conducted using shotgun mass spectrometry (MS) or reversed-phase liquid chromatography coupled with MS (LC–MS). However, chromatographic separation offers several advantages such as an additional identification parameter (retention time), lower ion suppression, and separation of isobaric species. In contrast, quantification is more difficult because ion suppression is not the same over the whole analysis, and as a consequence more standards are needed to compensate for this. Supercritical fluid chromatography (SFC) offers orthogonal separation compared to reversed-phase LC. While the separation of lipids in reversed-phase LC is mainly based on the length of the carbon chain and the number of double bonds, lipids in SFC are mainly separated according to their lipid classes, which simplifies quantification with standards. In this study, SFC coupled with drift time ion mobility quadrupole time-of-flight mass spectrometry (DTIMS-QTOF-MS)was used to characterize the HepG2 lipidome.","PeriodicalId":402085,"journal":{"name":"LCGC Europe","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LCGC Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56530/lcgc.eu.xq5675w3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lipidomic studies are often conducted using shotgun mass spectrometry (MS) or reversed-phase liquid chromatography coupled with MS (LC–MS). However, chromatographic separation offers several advantages such as an additional identification parameter (retention time), lower ion suppression, and separation of isobaric species. In contrast, quantification is more difficult because ion suppression is not the same over the whole analysis, and as a consequence more standards are needed to compensate for this. Supercritical fluid chromatography (SFC) offers orthogonal separation compared to reversed-phase LC. While the separation of lipids in reversed-phase LC is mainly based on the length of the carbon chain and the number of double bonds, lipids in SFC are mainly separated according to their lipid classes, which simplifies quantification with standards. In this study, SFC coupled with drift time ion mobility quadrupole time-of-flight mass spectrometry (DTIMS-QTOF-MS)was used to characterize the HepG2 lipidome.
超临界流体色谱耦合漂移时间离子迁移率四极杆飞行时间质谱作为HepG2细胞脂质表征的工具
脂质组学研究通常使用霰弹枪质谱(MS)或反相液相色谱联用质谱(LC-MS)进行。然而,色谱分离提供了几个优点,如额外的识别参数(保留时间),较低的离子抑制和等压物质的分离。相比之下,定量比较困难,因为离子抑制在整个分析中并不相同,因此需要更多的标准来弥补这一点。超临界流体色谱(SFC)与反相LC相比,提供了正交分离。反相LC主要根据碳链长度和双键数分离脂类,而SFC主要根据脂类分类分离脂类,简化了标准定量。在本研究中,SFC结合漂移时间离子迁移率四极杆飞行时间质谱(DTIMS-QTOF-MS)对HepG2脂质组进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信