D. Eppstein, M. Goodrich, Doruk Korkmaz, Nil Mamano
{"title":"Defining Equitable Geographic Districts in Road Networks via Stable Matching","authors":"D. Eppstein, M. Goodrich, Doruk Korkmaz, Nil Mamano","doi":"10.1145/3139958.3140015","DOIUrl":null,"url":null,"abstract":"We introduce a novel method for defining geographic districts in road networks using stable matching. In this approach, each geographic district is defined in terms of a center, which identifies a location of interest, such as a post office or polling place, and all other network vertices must be labeled with the center to which they are associated. We focus on defining geographic districts that are equitable, in that every district has the same number of vertices and the assignment is stable in terms of geographic distance. That is, there is no unassigned vertex-center pair such that both would prefer each other over their current assignments. We solve this problem using a version of the classic stable matching problem, called symmetric stable matching, in which the preferences of the elements in both sets obey a certain symmetry. We show that, for a planar graph or road network with n nodes and k centers, the problem can be solved in O(n √ n log n) time, which improves upon the O(nk) runtime of using the classic Gale--Shapley stable matching algorithm when k is large. Finally, we provide experimental results on road networks for these algorithms and a heuristic algorithm that performs better than the Gale--Shapley algorithm for any range of values of k.","PeriodicalId":270649,"journal":{"name":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3139958.3140015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We introduce a novel method for defining geographic districts in road networks using stable matching. In this approach, each geographic district is defined in terms of a center, which identifies a location of interest, such as a post office or polling place, and all other network vertices must be labeled with the center to which they are associated. We focus on defining geographic districts that are equitable, in that every district has the same number of vertices and the assignment is stable in terms of geographic distance. That is, there is no unassigned vertex-center pair such that both would prefer each other over their current assignments. We solve this problem using a version of the classic stable matching problem, called symmetric stable matching, in which the preferences of the elements in both sets obey a certain symmetry. We show that, for a planar graph or road network with n nodes and k centers, the problem can be solved in O(n √ n log n) time, which improves upon the O(nk) runtime of using the classic Gale--Shapley stable matching algorithm when k is large. Finally, we provide experimental results on road networks for these algorithms and a heuristic algorithm that performs better than the Gale--Shapley algorithm for any range of values of k.