The Normalized Laplacian Spectrum of Folded Hypercube with Applications

Baohua Niu, Shuming Zhou, Hong Zhang
{"title":"The Normalized Laplacian Spectrum of Folded Hypercube with Applications","authors":"Baohua Niu, Shuming Zhou, Hong Zhang","doi":"10.1142/s0129626423300015","DOIUrl":null,"url":null,"abstract":"In this work, we determine all the eigenvalues and their corresponding multiplicities of the normalized Laplacian matrix for folded hypercubes. Furthermore, we establish the explicit formula to calculate Kemeny’s constant for random walks on the folded hypercube, which indicates that its growth is roughly consistent with the network order. In addition, we also determine the number of spanning trees and degree-Kirchhoff index of folded hypercubes. Especially, we make some comparisons with that of hypercubes to verify that folded hypercubes have superior properties than hypercubes.","PeriodicalId":422436,"journal":{"name":"Parallel Process. Lett.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Process. Lett.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129626423300015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we determine all the eigenvalues and their corresponding multiplicities of the normalized Laplacian matrix for folded hypercubes. Furthermore, we establish the explicit formula to calculate Kemeny’s constant for random walks on the folded hypercube, which indicates that its growth is roughly consistent with the network order. In addition, we also determine the number of spanning trees and degree-Kirchhoff index of folded hypercubes. Especially, we make some comparisons with that of hypercubes to verify that folded hypercubes have superior properties than hypercubes.
折叠超立方体的归一化拉普拉斯谱及其应用
在这项工作中,我们确定了折叠超立方体的归一化拉普拉斯矩阵的所有特征值及其相应的多重性。此外,我们建立了计算折叠超立方体上随机行走的Kemeny常数的显式公式,表明其增长与网络顺序大致一致。此外,我们还确定了生成树的个数和折叠超立方体的度- kirchhoff指数。特别地,我们与超立方体进行了一些比较,以验证折叠超立方体比超立方体具有更优越的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信