{"title":"On Abstract Numerical Integrations","authors":"J. Sopka","doi":"10.6028/JRES.070B.010","DOIUrl":null,"url":null,"abstract":"Let X be a s pace of func tions, say X c C(K), K locally co mpact Hausdorff, le t IEX* be an int~gral on X and le t M* C X* be a given subspace of \"simple\" functiona ls, then it is des ired to obta in!!n leM~ for given n, leM\";, C M*; M\";, bein g a su itable\" dim ens ion a l s llb s pace d e t e rmin ed so th a t: I I annihi lates a given finit e dim ensiona l subs pace X, C X. In thi s ge neral context , the abst ract ana lysis of nllm e ri ca l integration is de ve loped and ce rtain speci fi c app licatio ns are made.","PeriodicalId":408709,"journal":{"name":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1966-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.070B.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let X be a s pace of func tions, say X c C(K), K locally co mpact Hausdorff, le t IEX* be an int~gral on X and le t M* C X* be a given subspace of "simple" functiona ls, then it is des ired to obta in!!n leM~ for given n, leM";, C M*; M";, bein g a su itable" dim ens ion a l s llb s pace d e t e rmin ed so th a t: I I annihi lates a given finit e dim ensiona l subs pace X, C X. In thi s ge neral context , the abst ract ana lysis of nllm e ri ca l integration is de ve loped and ce rtain speci fi c app licatio ns are made.
设X是一个函数的空间,比如X c c (K), K局部紧合Hausdorff,设X X*是X上的整数积分,设M* c X*是“简单”函数s的给定子空间,那么我们就想要得到它!!n leM~ for给定n, leM ';, cm *;M”,作为一种合适的“空间”,在空间X,空间X,空间X下,空间X,空间X,空间X下,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X,空间X。