An Enhanced Objective Cluster Analysis-Based Fuzzy Iterative Learning Approach for T-S Fuzzy Modeling

Na Wang, Chaofang Hu
{"title":"An Enhanced Objective Cluster Analysis-Based Fuzzy Iterative Learning Approach for T-S Fuzzy Modeling","authors":"Na Wang, Chaofang Hu","doi":"10.1109/ICCASE.2011.5997734","DOIUrl":null,"url":null,"abstract":"This work presents an Enhanced Objective Cluster Analysis-based fuzzy iterative learning approach for T-S fuzzy modeling. In this method, the Enhanced Objective Cluster Analysis including the Dipole Partition, the Relative Dissimilarity Measure and the Enhanced Consistency Criterion are incorporated with the Fuzzy - Means algorithm for the robust and compact fuzzy partition in the input space. For improving accuracy of the model, iterative learning strategy with Covering Measure is adopted to repartition the dissatisfying fuzzy subspaces according to the user's requirement. By the Stable Kalman Filter algorithm, the consequent parameters are efficiently estimated. The Box-Jenkins example demonstrates the power of our method.","PeriodicalId":369749,"journal":{"name":"2011 International Conference on Control, Automation and Systems Engineering (CASE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Control, Automation and Systems Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCASE.2011.5997734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work presents an Enhanced Objective Cluster Analysis-based fuzzy iterative learning approach for T-S fuzzy modeling. In this method, the Enhanced Objective Cluster Analysis including the Dipole Partition, the Relative Dissimilarity Measure and the Enhanced Consistency Criterion are incorporated with the Fuzzy - Means algorithm for the robust and compact fuzzy partition in the input space. For improving accuracy of the model, iterative learning strategy with Covering Measure is adopted to repartition the dissatisfying fuzzy subspaces according to the user's requirement. By the Stable Kalman Filter algorithm, the consequent parameters are efficiently estimated. The Box-Jenkins example demonstrates the power of our method.
基于目标聚类分析的T-S模糊建模的改进模糊迭代学习方法
本文提出了一种基于增强目标聚类分析的模糊迭代学习方法,用于T-S模糊建模。该方法将偶极子分割、相对不相似度度量和增强一致性准则等增强型目标聚类分析方法与模糊均值算法相结合,实现了输入空间的鲁棒紧凑模糊分割。为了提高模型的精度,采用覆盖度量的迭代学习策略,根据用户需求对不满意的模糊子空间进行重新划分。通过稳定卡尔曼滤波算法,有效地估计了后续参数。Box-Jenkins示例展示了我们方法的强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信