A Sub- THz CMOS Molecular Clock with 20 ppt Stability at 10,000 s Based on Dual-Loop Spectroscopic Detection and Digital Frequency Error Integration

Mina Kim, Cheng Wang, L. Yi, Hae-Seung Lee, R. Han
{"title":"A Sub- THz CMOS Molecular Clock with 20 ppt Stability at 10,000 s Based on Dual-Loop Spectroscopic Detection and Digital Frequency Error Integration","authors":"Mina Kim, Cheng Wang, L. Yi, Hae-Seung Lee, R. Han","doi":"10.1109/RFIC54546.2022.9863147","DOIUrl":null,"url":null,"abstract":"This paper presents a dual-loop chip-scale molecular clock (CSMC), which enhances the Allan Deviation performance by combining high signal-to-noise ratio of using fundamental mode and long-term stability of using higher order modes in derivative molecular absorption spectroscopy. In addition, digital frequency-error integration is adopted in the frequency-locked loop to provide an infinite open-loop DC gain, which fully suppresses any frequency drift caused by the temperature-sensitive crystal oscillator. This new generation CSMC is implemented in 65-nm CMOS, and achieves 20 ppt (part-per-trillion) Allan Deviation at 10,000 s averaging time with 71-mW power consumption.","PeriodicalId":415294,"journal":{"name":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC54546.2022.9863147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a dual-loop chip-scale molecular clock (CSMC), which enhances the Allan Deviation performance by combining high signal-to-noise ratio of using fundamental mode and long-term stability of using higher order modes in derivative molecular absorption spectroscopy. In addition, digital frequency-error integration is adopted in the frequency-locked loop to provide an infinite open-loop DC gain, which fully suppresses any frequency drift caused by the temperature-sensitive crystal oscillator. This new generation CSMC is implemented in 65-nm CMOS, and achieves 20 ppt (part-per-trillion) Allan Deviation at 10,000 s averaging time with 71-mW power consumption.
基于双环光谱检测和数字频率误差集成的亚太赫兹CMOS分子钟10000 s稳定性为20ppt
本文提出了一种双环芯片级分子钟(CSMC),它结合了导数分子吸收光谱中使用基模的高信噪比和使用高阶模的长期稳定性,提高了Allan Deviation的性能。锁频环采用数字频率误差积分,提供无限开环直流增益,充分抑制了温度敏感晶体振荡器引起的频率漂移。这款新一代CSMC采用65纳米CMOS,在10,000秒的平均时间内实现20 ppt(万亿分之一)Allan偏差,功耗为71兆瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信