Improving Recognition of Novel Input with Similarity

Jerod J. Weinman, E. Learned-Miller
{"title":"Improving Recognition of Novel Input with Similarity","authors":"Jerod J. Weinman, E. Learned-Miller","doi":"10.1109/CVPR.2006.151","DOIUrl":null,"url":null,"abstract":"Many sources of information relevant to computer vision and machine learning tasks are often underused. One example is the similarity between the elements from a novel source, such as a speaker, writer, or printed font. By comparing instances emitted by a source, we help ensure that similar instances are given the same label. Previous approaches have clustered instances prior to recognition. We propose a probabilistic framework that unifies similarity with prior identity and contextual information. By fusing information sources in a single model, we eliminate unrecoverable errors that result from processing the information in separate stages and improve overall accuracy. The framework also naturally integrates dissimilarity information, which has previously been ignored. We demonstrate with an application in printed character recognition from images of signs in natural scenes.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Many sources of information relevant to computer vision and machine learning tasks are often underused. One example is the similarity between the elements from a novel source, such as a speaker, writer, or printed font. By comparing instances emitted by a source, we help ensure that similar instances are given the same label. Previous approaches have clustered instances prior to recognition. We propose a probabilistic framework that unifies similarity with prior identity and contextual information. By fusing information sources in a single model, we eliminate unrecoverable errors that result from processing the information in separate stages and improve overall accuracy. The framework also naturally integrates dissimilarity information, which has previously been ignored. We demonstrate with an application in printed character recognition from images of signs in natural scenes.
利用相似度提高新输入的识别
许多与计算机视觉和机器学习任务相关的信息来源往往没有得到充分利用。一个例子是来自一个新来源的元素之间的相似性,例如演讲者、作家或印刷字体。通过比较源发出的实例,我们可以帮助确保为类似的实例提供相同的标签。以前的方法在识别之前对实例进行聚类。我们提出了一个概率框架,统一相似性与先前的身份和上下文信息。通过在单个模型中融合信息源,我们消除了由于在不同阶段处理信息而导致的不可恢复的错误,并提高了整体准确性。该框架还自然地集成了以前被忽略的差异性信息。我们用一个应用程序来演示从自然场景中的标志图像中识别印刷字符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信