An Intelligent System for the Diagnosis of Voice Pathology Based on Adversarial Pathological Response (APR) Net Deep Learning Model: An Intelligent System for the Diagnosis of Voice Pathology-Based Deep Learning

Vikas Mittal, R. Sharma
{"title":"An Intelligent System for the Diagnosis of Voice Pathology Based on Adversarial Pathological Response (APR) Net Deep Learning Model: An Intelligent System for the Diagnosis of Voice Pathology-Based Deep Learning","authors":"Vikas Mittal, R. Sharma","doi":"10.4018/ijsi.312261","DOIUrl":null,"url":null,"abstract":"The work investigates the use of two types of glottal flow derivative-based image variants of the input signal with an n-dilated (nD)-inception-layers-based deep learning model for providing optimal labels. The authors have proposed an n-dilated (nD) inception layer-based adversarial pathological response (APR) net deep learning model. This model is trained using the two image databases separately in an adversarial manner so that when a test image is common to test image is applied to both the networks. The results show a mean accuracy of 96.82%, 96.36%, and 99.35% for the Glottal inverse filtering with extended Kalman Filter-Morse scalogram (GIFEKF-MS) APRNet, Glottal inverse filtering with extended Kalman Filter-spectrogram (GIFEKF-S) APRNet, and proposed APR fusion net respectively using the VOice ICar fEDerico II (VOICED) dataset; and mean accuracies 95.67%, 93.27%, and 99.04% for the GIFEKF-MS APRNet, GIFEKF-S APRNet, and proposed APR fusion net respectively using the Saarbrucken voice database (SVD)dataset.","PeriodicalId":396598,"journal":{"name":"Int. J. Softw. Innov.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.312261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The work investigates the use of two types of glottal flow derivative-based image variants of the input signal with an n-dilated (nD)-inception-layers-based deep learning model for providing optimal labels. The authors have proposed an n-dilated (nD) inception layer-based adversarial pathological response (APR) net deep learning model. This model is trained using the two image databases separately in an adversarial manner so that when a test image is common to test image is applied to both the networks. The results show a mean accuracy of 96.82%, 96.36%, and 99.35% for the Glottal inverse filtering with extended Kalman Filter-Morse scalogram (GIFEKF-MS) APRNet, Glottal inverse filtering with extended Kalman Filter-spectrogram (GIFEKF-S) APRNet, and proposed APR fusion net respectively using the VOice ICar fEDerico II (VOICED) dataset; and mean accuracies 95.67%, 93.27%, and 99.04% for the GIFEKF-MS APRNet, GIFEKF-S APRNet, and proposed APR fusion net respectively using the Saarbrucken voice database (SVD)dataset.
基于对抗病理反应(APR)网络深度学习模型的语音病理诊断智能系统:基于深度学习的语音病理诊断智能系统
这项工作研究了输入信号的两种类型的基于声门流导数的图像变体的使用,以及基于n扩展(nD)初始层的深度学习模型,以提供最佳标签。作者提出了一种基于n扩张(nD)初始层的对抗性病理反应(APR)网络深度学习模型。该模型以对抗的方式分别使用两个图像数据库进行训练,以便当一个测试图像是通用的时,将测试图像应用于两个网络。结果表明:扩展卡尔曼滤波-莫尔斯尺度图(GIFEKF-MS) APRNet、扩展卡尔曼滤波-谱图(GIFEKF-S) APRNet和基于VOice ICar fEDerico II (voicar fEDerico II)数据集的声门反滤波和提出的APR融合网络的平均准确率分别为96.82%、96.36%和99.35%;使用Saarbrucken语音数据库(SVD)数据集构建的GIFEKF-MS APRNet、GIFEKF-S APRNet和提出的APR融合网络的平均准确率分别为95.67%、93.27%和99.04%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信