Towards a Hybrid Recommendation System On Apache Spark

K. S, R. Badre
{"title":"Towards a Hybrid Recommendation System On Apache Spark","authors":"K. S, R. Badre","doi":"10.1109/INDISCON50162.2020.00066","DOIUrl":null,"url":null,"abstract":"Now a day's success of internet business depends on its capability in providing personalized experiences for the users. In the era of SMAC, Social, Mobile, Analytics & Cloud the data is dynamic. But as the digital data is exponentially increasing users are having a deluge of options for services and commodities. Recommender Systems help users in overcoming the paradox of alternatives. This paper precis different approaches for Content based, Collaborative and hybrid recommendation systems to handle the usual problems of cold start and data sparsity. To generate accurate recommendation a hybrid frame work is proposed on the score. Experiments on movie lens dataset justify that the model proposed bring out better recommendations than the standard methods.","PeriodicalId":371571,"journal":{"name":"2020 IEEE India Council International Subsections Conference (INDISCON)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Council International Subsections Conference (INDISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDISCON50162.2020.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Now a day's success of internet business depends on its capability in providing personalized experiences for the users. In the era of SMAC, Social, Mobile, Analytics & Cloud the data is dynamic. But as the digital data is exponentially increasing users are having a deluge of options for services and commodities. Recommender Systems help users in overcoming the paradox of alternatives. This paper precis different approaches for Content based, Collaborative and hybrid recommendation systems to handle the usual problems of cold start and data sparsity. To generate accurate recommendation a hybrid frame work is proposed on the score. Experiments on movie lens dataset justify that the model proposed bring out better recommendations than the standard methods.
基于Apache Spark的混合推荐系统
如今,互联网商业的成功与否取决于其为用户提供个性化体验的能力。在SMAC、社交、移动、分析和云时代,数据是动态的。但随着数字数据呈指数级增长,用户对服务和商品有了大量的选择。推荐系统帮助用户克服选择的悖论。本文详细介绍了基于内容、协作和混合推荐系统处理冷启动和数据稀疏性等常见问题的不同方法。为了产生准确的推荐,提出了基于分数的混合框架。在电影镜头数据集上的实验证明,该模型比标准方法能给出更好的推荐结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信