M M Briggs, F J Seidler, T A Slotkin, F H Schachat
{"title":"Ontogenetic transition of cardiac myosin heavy chain isoforms in rat ventricle: effects of fetal exposure to beta-adrenergic agonists or antagonists.","authors":"M M Briggs, F J Seidler, T A Slotkin, F H Schachat","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiac myosin heavy chain (MHC) expression undergoes an ontogenetic transition from beta to alpha MHC isoforms. Although thyroid hormone plays a role in this change, the timing of the events suggests the participation of other factors. Using a new, denaturing SDS-PAGE procedure that cleanly resolves the beta and alpha heavy chains, we have assessed the role of beta-adrenergic stimulation on this transition in fetal and neonatal rat hearts. In control animals at embryonic day 20, less than 15% of the MHC was the alpha-form, and the proportion increased to approximately 35% by postnatal day 1 and to 80% by postnatal day 8. Although catecholamine levels rise abruptly at birth, and cyclic AMP levels increase the expression of alpha-MHC in vitro, neither premature beta-adrenergic stimulation (maternal treatment with terbutaline on embryonic days 17, 18 and 19) nor continuous prenatal blockade of beta-receptors (maternal propranolol infusions from embryonic day 7 onward) influenced the developmental profile. Because beta-receptors in fetal and neonatal heart are functionally linked to adenylate cyclase, and cyclic AMP has been shown to promote the expression of alpha-MHC, the lack of effect of terbutaline or propranolol suggests that activation of adenylate cyclase through fetal cardiac beta-receptors is not sufficient to mediate the switchover without participation of other factors, such as thyroid or steroid hormones, or hypoxia.</p>","PeriodicalId":15572,"journal":{"name":"Journal of developmental physiology","volume":"17 4","pages":"201-6"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of developmental physiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiac myosin heavy chain (MHC) expression undergoes an ontogenetic transition from beta to alpha MHC isoforms. Although thyroid hormone plays a role in this change, the timing of the events suggests the participation of other factors. Using a new, denaturing SDS-PAGE procedure that cleanly resolves the beta and alpha heavy chains, we have assessed the role of beta-adrenergic stimulation on this transition in fetal and neonatal rat hearts. In control animals at embryonic day 20, less than 15% of the MHC was the alpha-form, and the proportion increased to approximately 35% by postnatal day 1 and to 80% by postnatal day 8. Although catecholamine levels rise abruptly at birth, and cyclic AMP levels increase the expression of alpha-MHC in vitro, neither premature beta-adrenergic stimulation (maternal treatment with terbutaline on embryonic days 17, 18 and 19) nor continuous prenatal blockade of beta-receptors (maternal propranolol infusions from embryonic day 7 onward) influenced the developmental profile. Because beta-receptors in fetal and neonatal heart are functionally linked to adenylate cyclase, and cyclic AMP has been shown to promote the expression of alpha-MHC, the lack of effect of terbutaline or propranolol suggests that activation of adenylate cyclase through fetal cardiac beta-receptors is not sufficient to mediate the switchover without participation of other factors, such as thyroid or steroid hormones, or hypoxia.