NUMERAL SCALING METHODS IN MODULAR ARITHMETIC: REVIEW, DEVELOPMENT AND ESTIMATION OF THE ALGORITHMS COMPLEXITY

Н. С. Золотарева
{"title":"NUMERAL SCALING METHODS IN MODULAR ARITHMETIC: REVIEW, DEVELOPMENT AND ESTIMATION OF THE ALGORITHMS COMPLEXITY","authors":"Н. С. Золотарева","doi":"10.35266/1999-7604-2023-1-59-72","DOIUrl":null,"url":null,"abstract":"The study describes two methods of numeral scaling in a modular number system: one which is based on the interval estimation and the other one which uses iterative algorithm of scaling number X by the coefficient K and includes both the stage of base system expansion and the scaling stage itself. The authors demonstrate the examples and results of algorithms operation provided by the programs developed via Python that simulate algorithms execution on a computer. Estimates of the algorithms complexity were defined in order to compare them and to detect the most appropriate ones.","PeriodicalId":431138,"journal":{"name":"Proceedings in Cybernetics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings in Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35266/1999-7604-2023-1-59-72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study describes two methods of numeral scaling in a modular number system: one which is based on the interval estimation and the other one which uses iterative algorithm of scaling number X by the coefficient K and includes both the stage of base system expansion and the scaling stage itself. The authors demonstrate the examples and results of algorithms operation provided by the programs developed via Python that simulate algorithms execution on a computer. Estimates of the algorithms complexity were defined in order to compare them and to detect the most appropriate ones.
模运算中的数值缩放方法:回顾、发展及算法复杂度的估计
研究了模数系统的两种数字缩放方法:一种是基于区间估计的方法,另一种是使用系数K对数X进行缩放的迭代算法,包括基系统扩展阶段和缩放阶段本身。作者给出了用Python编写的程序在计算机上模拟算法执行的实例和算法运行结果。定义了算法复杂度的估计,以便对它们进行比较并检测出最合适的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信