No-reference quality assessment for contrast-distorted image

Jun Wu, Zhaoqiang Xia, Yifeng Ren, Huifang Li
{"title":"No-reference quality assessment for contrast-distorted image","authors":"Jun Wu, Zhaoqiang Xia, Yifeng Ren, Huifang Li","doi":"10.1109/IPTA.2016.7820968","DOIUrl":null,"url":null,"abstract":"Contrast change is a special type of image distortion which is vitally important for visual perception of image quality, while little investigates has been dedicated to the contrast-distorted images. A proper contrast change not only reduces human visual perception, instead of improving it. This characteristic determines that full-reference way cannot assess contrast-distorted images properly. In this paper, we propose a no-reference way for contrast-distorted image assessment. Five statistical features are extracted from the distortion image, and two features are extracted from the phase congruence (PC) map of distortion image. These features and human mean opinion scores (MOS) of training images are jointly utilized to train a model of support vector regression (SVR). The quality of testing image is evaluated by this learned model. Experiments on CCID2014 database demonstrate the promising performance of the proposed metric.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Contrast change is a special type of image distortion which is vitally important for visual perception of image quality, while little investigates has been dedicated to the contrast-distorted images. A proper contrast change not only reduces human visual perception, instead of improving it. This characteristic determines that full-reference way cannot assess contrast-distorted images properly. In this paper, we propose a no-reference way for contrast-distorted image assessment. Five statistical features are extracted from the distortion image, and two features are extracted from the phase congruence (PC) map of distortion image. These features and human mean opinion scores (MOS) of training images are jointly utilized to train a model of support vector regression (SVR). The quality of testing image is evaluated by this learned model. Experiments on CCID2014 database demonstrate the promising performance of the proposed metric.
对比度失真图像的无参考质量评价
对比度变化是图像失真的一种特殊类型,对图像质量的视觉感知至关重要,而对对比度失真图像的研究却很少。适当的对比度变化不仅不能提高人的视觉感受,反而会降低人的视觉感受。这一特性决定了全参考方法不能很好地评价对比度失真图像。本文提出了一种用于对比度失真图像评估的无参考方法。从畸变图像中提取5个统计特征,从畸变图像的相位同余(PC)图中提取2个特征。利用这些特征和训练图像的人类平均意见分数(MOS)共同训练支持向量回归(SVR)模型。利用该学习模型对测试图像的质量进行评价。在CCID2014数据库上的实验证明了该度量方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信