Lamia Oukid, Ounas Asfari, F. Bentayeb, N. Benblidia, Omar Boussaïd
{"title":"CXT-cube: contextual text cube model and aggregation operator for text OLAP","authors":"Lamia Oukid, Ounas Asfari, F. Bentayeb, N. Benblidia, Omar Boussaïd","doi":"10.1145/2513190.2513201","DOIUrl":null,"url":null,"abstract":"Traditional data warehousing technologies and On-Line Analytical Processing (OLAP) are unable to analyze textual data. Moreover, as OLAP queries of a decision-maker are generally related to a context, contextual information must be taken into account during the exploitation of data warehouses. Thus, we propose a contextual text cube model denoted CXT-Cube which considers several contextual factors during the OLAP analysis in order to better consider the contextual information associated with textual data. CXT-Cube is characterized by several contextual dimensions, each one related to a contextual factor. In addition, we extend our aggregation OLAP operator for textual data ORank (OLAP-Rank) to consider all the contextual factors defined in our CXT-Cube model. To validate our model, we perform an experimental study and the preliminary results show the importance of our approach for integrating textual data into a data warehouse and improving the decision-making.","PeriodicalId":335396,"journal":{"name":"International Workshop on Data Warehousing and OLAP","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Warehousing and OLAP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513190.2513201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
Traditional data warehousing technologies and On-Line Analytical Processing (OLAP) are unable to analyze textual data. Moreover, as OLAP queries of a decision-maker are generally related to a context, contextual information must be taken into account during the exploitation of data warehouses. Thus, we propose a contextual text cube model denoted CXT-Cube which considers several contextual factors during the OLAP analysis in order to better consider the contextual information associated with textual data. CXT-Cube is characterized by several contextual dimensions, each one related to a contextual factor. In addition, we extend our aggregation OLAP operator for textual data ORank (OLAP-Rank) to consider all the contextual factors defined in our CXT-Cube model. To validate our model, we perform an experimental study and the preliminary results show the importance of our approach for integrating textual data into a data warehouse and improving the decision-making.