Multimodal Extension of the ML-CSC Framework for Medical Image Segmentation

Jens Janssens, Srdan Lazendic, Shaoguang Huang, A. Pižurica
{"title":"Multimodal Extension of the ML-CSC Framework for Medical Image Segmentation","authors":"Jens Janssens, Srdan Lazendic, Shaoguang Huang, A. Pižurica","doi":"10.1109/ISPA52656.2021.9552083","DOIUrl":null,"url":null,"abstract":"In recent years, Convolutional Neural Networks (CNNs) have led to huge successes across various computer vision applications. However, the lack of interpretability poses a severe barrier for their wider adoption in healthcare. Recently introduced Multilayer Convolutional Sparse Coding (ML-CSC) data model provides a model-based explanation of CNNs. This article aims to extend the ML-CSC framework towards multimodal data processing, which to our knowledge has not been addressed so far. In particular, we focus on interpretable medical image segmentation architecture design for multimodal data. We derive a novel sparse coding algorithm and propose three different CNN architectures with increasing performance, without introducing any additional learnable parameters. Based on the sparse coding theory, our multimodal extension enables the systematic design of interpretable CNN segmentation architectures. Experimental analysis demonstrates that the achieved segmentation results are consistent with the obtained theoretical expectations.","PeriodicalId":131088,"journal":{"name":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA52656.2021.9552083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, Convolutional Neural Networks (CNNs) have led to huge successes across various computer vision applications. However, the lack of interpretability poses a severe barrier for their wider adoption in healthcare. Recently introduced Multilayer Convolutional Sparse Coding (ML-CSC) data model provides a model-based explanation of CNNs. This article aims to extend the ML-CSC framework towards multimodal data processing, which to our knowledge has not been addressed so far. In particular, we focus on interpretable medical image segmentation architecture design for multimodal data. We derive a novel sparse coding algorithm and propose three different CNN architectures with increasing performance, without introducing any additional learnable parameters. Based on the sparse coding theory, our multimodal extension enables the systematic design of interpretable CNN segmentation architectures. Experimental analysis demonstrates that the achieved segmentation results are consistent with the obtained theoretical expectations.
医学图像分割ML-CSC框架的多模态扩展
近年来,卷积神经网络(cnn)在各种计算机视觉应用中取得了巨大的成功。然而,缺乏可解释性对其在医疗保健领域的广泛采用构成了严重障碍。最近提出的多层卷积稀疏编码(ML-CSC)数据模型为cnn提供了一种基于模型的解释。本文旨在将ML-CSC框架扩展到多模态数据处理,据我们所知,到目前为止还没有解决这个问题。我们特别关注多模态数据的可解释医学图像分割架构设计。我们推导了一种新的稀疏编码算法,并提出了三种不同的CNN架构,在不引入任何额外的可学习参数的情况下,提高了性能。基于稀疏编码理论,我们的多模态扩展实现了可解释CNN分割架构的系统化设计。实验分析表明,所获得的分割结果与理论预期一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信