Tracking, Vertexing and data handling strategy for the LHCb upgrade

Paul Seyfert
{"title":"Tracking, Vertexing and data handling strategy for the LHCb upgrade","authors":"Paul Seyfert","doi":"10.22323/1.309.0039","DOIUrl":null,"url":null,"abstract":"For Run III (2021 onwards) of the LHC, LHCb will take data at an instantaneous \nluminosity of $2 \\times 10^{33} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$, five times \nhigher than in Run II (2015-2018). To cope with the harsher data taking \nconditions, the LHCb collaboration will upgrade the DAQ system and install a \npurely software based trigger, in addition to various detector upgrades. The \nhigh readout rate contributes to the challenge of reconstructing and selecting \nevents in real time. \n \nSpecial emphasis in this contribution will be put on the need for fast track \nreconstruction in the software trigger. The modified detector \ninfrastructure will be able to face this challenge and the necessary \nchanges to the reconstruction sequence are discussed. A novel strategy is presented which \ndistributes and maximises the bandwidth among the different physics channels \nusing a genetic algorithm. \n \nThe data processing chain includes a redesign of the event scheduling, \nintroduction of concurrent processing, optimisations in processor cache \naccesses and code vectorisation. Furthermore changes in the areas of event \nmodel, conditions data and detector description are foreseen.","PeriodicalId":325789,"journal":{"name":"Proceedings of The 26th International Workshop on Vertex Detectors — PoS(Vertex 2017)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 26th International Workshop on Vertex Detectors — PoS(Vertex 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.309.0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For Run III (2021 onwards) of the LHC, LHCb will take data at an instantaneous luminosity of $2 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$, five times higher than in Run II (2015-2018). To cope with the harsher data taking conditions, the LHCb collaboration will upgrade the DAQ system and install a purely software based trigger, in addition to various detector upgrades. The high readout rate contributes to the challenge of reconstructing and selecting events in real time. Special emphasis in this contribution will be put on the need for fast track reconstruction in the software trigger. The modified detector infrastructure will be able to face this challenge and the necessary changes to the reconstruction sequence are discussed. A novel strategy is presented which distributes and maximises the bandwidth among the different physics channels using a genetic algorithm. The data processing chain includes a redesign of the event scheduling, introduction of concurrent processing, optimisations in processor cache accesses and code vectorisation. Furthermore changes in the areas of event model, conditions data and detector description are foreseen.
LHCb升级的跟踪、顶点化和数据处理策略
对于大型强子对撞机的第三次运行(2021年起),LHCb将以2 \乘以10^{33}\ mathm {cm}^{-2} \ mathm {s}^{-1}$的瞬时光度获取数据,比第二次运行(2015-2018)高5倍。为了应对更恶劣的数据采集条件,LHCb合作将升级DAQ系统,并安装一个纯粹基于软件的触发器,此外还有各种探测器升级。高读出率给实时重建和选择事件带来了挑战。在这个贡献中将特别强调在软件触发器中快速通道重建的需要。改进后的探测器基础设施将能够面对这一挑战,并讨论了对重建序列的必要改变。提出了一种利用遗传算法在不同物理信道间分配和最大化带宽的新策略。数据处理链包括重新设计事件调度、引入并发处理、优化处理器缓存访问和代码矢量化。并对事件模型、条件数据和探测器描述等方面的变化进行了预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信