T. Kraft, K. Okagaki, R. Ishii, P. Surko, A. Brandon, A. DeWeese, S. Peterson, R. Bjordal
{"title":"A hybrid neural network and expert system for monitoring fossil fuel power plants","authors":"T. Kraft, K. Okagaki, R. Ishii, P. Surko, A. Brandon, A. DeWeese, S. Peterson, R. Bjordal","doi":"10.1109/ANN.1991.213475","DOIUrl":null,"url":null,"abstract":"A fully recurrent neural network and a rule-based expert system are combined in a hybrid architecture to provide power plant operators with an intelligent on-line advisory system. Its purpose is to alert the operator to impending or occurring abnormal conditions related to the plant's boiler. The hybrid system is trained to provide a model of the boiler under normal operation, while the rules address a general set of diagnostic events. Deviation from normal conditions trigger rules to suggest corrective action. This system is intended to increase plant availability and efficiency by automatically deducing abnormal boiler conditions before they become critical.<<ETX>>","PeriodicalId":119713,"journal":{"name":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First International Forum on Applications of Neural Networks to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANN.1991.213475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
A fully recurrent neural network and a rule-based expert system are combined in a hybrid architecture to provide power plant operators with an intelligent on-line advisory system. Its purpose is to alert the operator to impending or occurring abnormal conditions related to the plant's boiler. The hybrid system is trained to provide a model of the boiler under normal operation, while the rules address a general set of diagnostic events. Deviation from normal conditions trigger rules to suggest corrective action. This system is intended to increase plant availability and efficiency by automatically deducing abnormal boiler conditions before they become critical.<>