Takuya Sugitani, Masumi Shirakawa, T. Hara, S. Nishio
{"title":"Detecting Local Events by Analyzing Spatiotemporal Locality of Tweets","authors":"Takuya Sugitani, Masumi Shirakawa, T. Hara, S. Nishio","doi":"10.1109/WAINA.2013.246","DOIUrl":null,"url":null,"abstract":"In this paper, we study how to detect local events regardless of the size and the type using Twitter, a social networking service. Our method is based on the observation that relevant tweets are simultaneously posted from the place where a local event is happening. Specifically, our method first extracts the place where and the time when multiple tweets are posted by using clustering techniques and then detects the co-occurrence of key terms in each cluster to find local events. For determining key terms, our method also leverages spatiotemporal locality of tweets. From experimental results on tweet data from 9:00 to 15:00 on October 9, 2011, we confirmed the effectiveness of our method.","PeriodicalId":359251,"journal":{"name":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2013.246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
In this paper, we study how to detect local events regardless of the size and the type using Twitter, a social networking service. Our method is based on the observation that relevant tweets are simultaneously posted from the place where a local event is happening. Specifically, our method first extracts the place where and the time when multiple tweets are posted by using clustering techniques and then detects the co-occurrence of key terms in each cluster to find local events. For determining key terms, our method also leverages spatiotemporal locality of tweets. From experimental results on tweet data from 9:00 to 15:00 on October 9, 2011, we confirmed the effectiveness of our method.