Detecting Local Events by Analyzing Spatiotemporal Locality of Tweets

Takuya Sugitani, Masumi Shirakawa, T. Hara, S. Nishio
{"title":"Detecting Local Events by Analyzing Spatiotemporal Locality of Tweets","authors":"Takuya Sugitani, Masumi Shirakawa, T. Hara, S. Nishio","doi":"10.1109/WAINA.2013.246","DOIUrl":null,"url":null,"abstract":"In this paper, we study how to detect local events regardless of the size and the type using Twitter, a social networking service. Our method is based on the observation that relevant tweets are simultaneously posted from the place where a local event is happening. Specifically, our method first extracts the place where and the time when multiple tweets are posted by using clustering techniques and then detects the co-occurrence of key terms in each cluster to find local events. For determining key terms, our method also leverages spatiotemporal locality of tweets. From experimental results on tweet data from 9:00 to 15:00 on October 9, 2011, we confirmed the effectiveness of our method.","PeriodicalId":359251,"journal":{"name":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 27th International Conference on Advanced Information Networking and Applications Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2013.246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, we study how to detect local events regardless of the size and the type using Twitter, a social networking service. Our method is based on the observation that relevant tweets are simultaneously posted from the place where a local event is happening. Specifically, our method first extracts the place where and the time when multiple tweets are posted by using clustering techniques and then detects the co-occurrence of key terms in each cluster to find local events. For determining key terms, our method also leverages spatiotemporal locality of tweets. From experimental results on tweet data from 9:00 to 15:00 on October 9, 2011, we confirmed the effectiveness of our method.
通过分析推文的时空局部性来检测局部事件
在本文中,我们研究了如何使用Twitter(一种社交网络服务)检测本地事件,无论其大小和类型。我们的方法是基于这样一种观察,即相关的tweet是同时从本地事件发生的地方发布的。具体来说,我们的方法首先使用聚类技术提取多个tweet发布的地点和时间,然后检测每个聚类中关键词的共现情况,以查找本地事件。为了确定关键术语,我们的方法还利用了tweet的时空局部性。从2011年10月9日9:00 - 15:00的tweet数据的实验结果中,我们证实了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信