Oil-Spills Detection in Net-Sar Radar Images Using Support VectorMachine

Dong Zhiming, Guo Li-xia, Zeng Jiankui, Zhou Xuebin
{"title":"Oil-Spills Detection in Net-Sar Radar Images Using Support VectorMachine","authors":"Dong Zhiming, Guo Li-xia, Zeng Jiankui, Zhou Xuebin","doi":"10.2174/1874444301507011958","DOIUrl":null,"url":null,"abstract":"Oil-spills detection is an important problem in many applications such as communication and navigation. Many methods have been presented for this problem. The Maximum Likelihood (ML) is one of the good solutions. But, in tradi- tional algorithms for ML Nonetheless, the computational load is very heavy and multivariate nonlinear maximization problem is serious. To deal with these problems, this paper describes an application of neural network (NN) for obtaining the global optimal solution of ML DOA estimation. It overcomes the local optima problem existing in some ML DOA es- timation algorithms and improves the estimation accuracy. The computation complexity is modest.","PeriodicalId":153592,"journal":{"name":"The Open Automation and Control Systems Journal","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Automation and Control Systems Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874444301507011958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Oil-spills detection is an important problem in many applications such as communication and navigation. Many methods have been presented for this problem. The Maximum Likelihood (ML) is one of the good solutions. But, in tradi- tional algorithms for ML Nonetheless, the computational load is very heavy and multivariate nonlinear maximization problem is serious. To deal with these problems, this paper describes an application of neural network (NN) for obtaining the global optimal solution of ML DOA estimation. It overcomes the local optima problem existing in some ML DOA es- timation algorithms and improves the estimation accuracy. The computation complexity is modest.
基于支持向量机的Net-Sar雷达图像溢油检测
溢油检测在通信和导航等许多应用中都是一个重要问题。针对这个问题已经提出了许多方法。最大似然(ML)是一个很好的解决方案。但是,在传统的机器学习算法中,计算量非常大,并且存在严重的多元非线性最大化问题。为了解决这些问题,本文描述了神经网络在ML DOA估计全局最优解中的应用。该方法克服了一些机器学习DOA估计算法存在的局部最优问题,提高了估计精度。计算复杂度适中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信