Intelligently-Automated Facilities Expansion with the HEPCloud Decision Engine

P. Mhashilkar, Mine Altunay, W. Dagenhart, S. Fuess, B. Holzman, J. Kowalkowski, D. Litvintsev, Qiming Lu, A. Moibenko, M. Paterno, P. Spentzouris, S. Timm, A. Tiradani
{"title":"Intelligently-Automated Facilities Expansion with the HEPCloud Decision Engine","authors":"P. Mhashilkar, Mine Altunay, W. Dagenhart, S. Fuess, B. Holzman, J. Kowalkowski, D. Litvintsev, Qiming Lu, A. Moibenko, M. Paterno, P. Spentzouris, S. Timm, A. Tiradani","doi":"10.1109/CCGRID.2018.00053","DOIUrl":null,"url":null,"abstract":"The next generation of High Energy Physics experiments are expected to generate exabytes of data—two orders of magnitude greater than the current generation. In order to reliably meet peak demands, facilities must either plan to provision enough resources to cover the forecasted need, or find ways to elastically expand their computational capabilities. Commercial cloud and allocation-based High Performance Computing (HPC) resources both have explicit and implicit costs that must be considered when deciding when to provision these resources, and to choose an appropriate scale. In order to support such provisioning in a manner consistent with organizational business rules and budget constraints, we have developed a modular intelligent decision support system (IDSS) to aid in the automatic provisioning of resources—spanning multiple cloud providers, multiple HPC centers, and grid computing federations.","PeriodicalId":321027,"journal":{"name":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2018.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The next generation of High Energy Physics experiments are expected to generate exabytes of data—two orders of magnitude greater than the current generation. In order to reliably meet peak demands, facilities must either plan to provision enough resources to cover the forecasted need, or find ways to elastically expand their computational capabilities. Commercial cloud and allocation-based High Performance Computing (HPC) resources both have explicit and implicit costs that must be considered when deciding when to provision these resources, and to choose an appropriate scale. In order to support such provisioning in a manner consistent with organizational business rules and budget constraints, we have developed a modular intelligent decision support system (IDSS) to aid in the automatic provisioning of resources—spanning multiple cloud providers, multiple HPC centers, and grid computing federations.
智能自动化设施扩展与HEPCloud决策引擎
下一代高能物理实验预计将产生艾字节的数据——比当前一代多两个数量级。为了可靠地满足高峰需求,设施必须计划提供足够的资源来满足预测的需求,或者找到弹性扩展其计算能力的方法。商业云和基于分配的高性能计算(HPC)资源都有显式和隐性成本,在决定何时提供这些资源以及选择适当的规模时,必须考虑这些成本。为了以与组织业务规则和预算约束一致的方式支持这种配置,我们开发了一个模块化智能决策支持系统(IDSS)来帮助自动配置跨多个云提供商、多个HPC中心和网格计算联盟的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信