A. Charalambides, Jian Cheng, Teng Li, S. Bergbreiter
{"title":"3-axis all elastomer MEMS tactile sensor","authors":"A. Charalambides, Jian Cheng, Teng Li, S. Bergbreiter","doi":"10.1109/MEMSYS.2015.7051060","DOIUrl":null,"url":null,"abstract":"This paper reports the first 3-axis (normal and shear force) all-elastomer capacitive MEMS tactile sensor. A multiphysics finite element model was developed and was used to tailor sensor geometry for high shear force sensitivity. Sensor area was 1.5 × 1.5 mm and used vertical capacitive structures with 20 μm electrode gaps to achieve high shear force sensitivities of 8.8 fF/N, shear force resolutions of 50 mN, and shear range of more than 2000 mN, with a normal force sensitivity of 0.9 fF/N. Fabrication utilized a simple elastomer molding process with reusable DRIE silicon molds for inexpensive manufacturing.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7051060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper reports the first 3-axis (normal and shear force) all-elastomer capacitive MEMS tactile sensor. A multiphysics finite element model was developed and was used to tailor sensor geometry for high shear force sensitivity. Sensor area was 1.5 × 1.5 mm and used vertical capacitive structures with 20 μm electrode gaps to achieve high shear force sensitivities of 8.8 fF/N, shear force resolutions of 50 mN, and shear range of more than 2000 mN, with a normal force sensitivity of 0.9 fF/N. Fabrication utilized a simple elastomer molding process with reusable DRIE silicon molds for inexpensive manufacturing.