Efficient probabilistically checkable proofs and applications to approximations

M. Bellare, S. Goldwasser, C. Lund, Alexander Russell
{"title":"Efficient probabilistically checkable proofs and applications to approximations","authors":"M. Bellare, S. Goldwasser, C. Lund, Alexander Russell","doi":"10.1145/167088.167174","DOIUrl":null,"url":null,"abstract":"Efficient Probabilistically Checkable Proofs and Applications to Approximation M. BELLARE* S. GOLDWASSERt C. LUNDi A. RUSSELL$ We construct multi-prover proof systems for NP which use only a constant number of provers to simultaneously achieve low error, low randomness and low answer size. As a consequence, we obtain asymptotic improvements to approximation hardness results for a wide range of optimization problems including minimum set cover, dominating set, maximum clique, chromatic number, and quartic programming; and constant factor improvements on the hardness results for MAXSNP problems. In particular, we show that approximating minimum set cover within any constant is NP-complete; approximating minimum set cover within c log n, for c < 1/8, implies NP C DTIME(nlOglOgn); approximat— ing the maximum of a quartic program within any constant is NP-complete; approximating maximum clique or chromatic number within nl/29 implies NP ~ BPP; and approximating MAX-3 SAT within 113/112 is NPcomplete. * High Performance Computing and Communications, IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA. e-mail: mihirf.Qwatson. ibm. corn. t MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA. e-mail: shaf i@theory. lcs. init. edu. Partially supported by NSF FAW grant No. 9023312-CCR, DARPA g-rant No. NOO014-92-J-1799, and grant No. 89-00312 from the United States Israel Binationsl Science Foundation (BSF), Jerusalem, Israel. $ AT&T Bell Laboratories, Room 2C324, 600 Momtain Avenue, P. O. Box 636, Murray Hill, NJ 07974-0636, USA. email: lund@resesrch. att. corn. $ MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA. e-mail: acrtttheory. lcs. mit . edn. Supported by a NSF Graduate Fellowship and by NSF grant 92-12184, AFOSR 89-0271, and DARPA NOO014-92-J-1799. Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 25th ACM STOC ‘93-51931CA,USA","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"304","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 304

Abstract

Efficient Probabilistically Checkable Proofs and Applications to Approximation M. BELLARE* S. GOLDWASSERt C. LUNDi A. RUSSELL$ We construct multi-prover proof systems for NP which use only a constant number of provers to simultaneously achieve low error, low randomness and low answer size. As a consequence, we obtain asymptotic improvements to approximation hardness results for a wide range of optimization problems including minimum set cover, dominating set, maximum clique, chromatic number, and quartic programming; and constant factor improvements on the hardness results for MAXSNP problems. In particular, we show that approximating minimum set cover within any constant is NP-complete; approximating minimum set cover within c log n, for c < 1/8, implies NP C DTIME(nlOglOgn); approximat— ing the maximum of a quartic program within any constant is NP-complete; approximating maximum clique or chromatic number within nl/29 implies NP ~ BPP; and approximating MAX-3 SAT within 113/112 is NPcomplete. * High Performance Computing and Communications, IBM T.J. Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA. e-mail: mihirf.Qwatson. ibm. corn. t MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA. e-mail: shaf i@theory. lcs. init. edu. Partially supported by NSF FAW grant No. 9023312-CCR, DARPA g-rant No. NOO014-92-J-1799, and grant No. 89-00312 from the United States Israel Binationsl Science Foundation (BSF), Jerusalem, Israel. $ AT&T Bell Laboratories, Room 2C324, 600 Momtain Avenue, P. O. Box 636, Murray Hill, NJ 07974-0636, USA. email: lund@resesrch. att. corn. $ MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA. e-mail: acrtttheory. lcs. mit . edn. Supported by a NSF Graduate Fellowship and by NSF grant 92-12184, AFOSR 89-0271, and DARPA NOO014-92-J-1799. Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. 25th ACM STOC ‘93-51931CA,USA
有效的概率可检验证明及其在近似中的应用
M. BELLARE* S. GOLDWASSERt C. LUNDi a . RUSSELL$我们构建了NP的多证明者证明系统,该系统仅使用恒定数量的证明者同时实现低错误,低随机性和低答案大小。因此,我们对包括最小集覆盖、支配集、最大团、色数和四次规划在内的一系列优化问题的逼近硬度结果进行了渐近改进;对MAXSNP问题的硬度结果进行持续因子改进。特别地,我们证明了在任意常数范围内逼近最小集覆盖是np完全的;当c < 1/8时,在c log n内逼近最小集覆盖,意味着NP c DTIME(nlOglOgn);在任意常数范围内逼近四次规划的最大值是np完全的;最大团数或色数在nl/29范围内近似表示NP ~ BPP;在113/112范围内近似MAX-3 SAT为NPcomplete。*高性能计算和通信,IBM T.J.沃森研究中心,邮政信箱704,约克敦海茨,NY 10598,美国。电子邮件:mihirf.Qwatson。ibm。玉米。1麻省理工学院计算机科学实验室,麻省剑桥科技广场545号,02139电子邮件:shaf i@theory。lcs。init。edu。部分资助:NSF FAW资助号9023312-CCR, DARPA资助号9023312-CCR。no014 -92- j -1799,美国以色列国家科学基金会(BSF)批准号89-00312,以色列耶路撒冷。$ AT&T贝尔实验室,美国新泽西州默里山山山大道600号邮编636信箱2C324室。电子邮件:lund@resesrch。att.玉米。$麻省理工学院计算机科学实验室,545技术广场,马萨诸塞州剑桥02139,美国电子邮件:acrtttheory。lcs。麻省理工学院。经济日报。由NSF研究生奖学金和NSF基金92-12184,AFOSR 89-0271和DARPA no014 -92- j -1799资助。允许免费复制本材料的全部或部分,前提是这些副本不是为了直接的商业利益而制作或分发的,必须出现ACM版权声明、出版物的标题和日期,并注明复制是由计算机协会许可的。以其他方式复制或重新发布需要付费和/或特定许可。25 ACM STOC ' 93-51931CA,美国
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信