Reshaping the Semantic Logits for Proposal-free Panoptic Segmentation

Tianqi Lu, Chenyue Zhu
{"title":"Reshaping the Semantic Logits for Proposal-free Panoptic Segmentation","authors":"Tianqi Lu, Chenyue Zhu","doi":"10.1109/ICTAI56018.2022.00136","DOIUrl":null,"url":null,"abstract":"We propose to enable the general semantic segmentation frameworks to separate instances so that such frameworks can be used for the panoptic segmentation task. In the semantic segmentation frameworks, the logits which are output from the neural network and normalized by the following softmax function can only distinguish classes but not instances. In this work, we find simple regularization on the logits can help to single out the instances, which is modeled by an energy-based representation, energy surface. Several regularization approaches are discussed and a novel persistent homology-based instance extraction method is proposed to obtain the instances. Finally, we demonstrate the generality of the logit regularization on different base semantic segmentation frameworks and evaluating them on Cityscapes, Mapillary Vistas, and COCO. High-quality semantic segmentation frameworks such as DeepLabV3+ and HRNet-OCR can achieve competitive performance to the state-of-the-art proposal-free panoptic segmentation solver. Codes and trained models will be made public.","PeriodicalId":354314,"journal":{"name":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI56018.2022.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose to enable the general semantic segmentation frameworks to separate instances so that such frameworks can be used for the panoptic segmentation task. In the semantic segmentation frameworks, the logits which are output from the neural network and normalized by the following softmax function can only distinguish classes but not instances. In this work, we find simple regularization on the logits can help to single out the instances, which is modeled by an energy-based representation, energy surface. Several regularization approaches are discussed and a novel persistent homology-based instance extraction method is proposed to obtain the instances. Finally, we demonstrate the generality of the logit regularization on different base semantic segmentation frameworks and evaluating them on Cityscapes, Mapillary Vistas, and COCO. High-quality semantic segmentation frameworks such as DeepLabV3+ and HRNet-OCR can achieve competitive performance to the state-of-the-art proposal-free panoptic segmentation solver. Codes and trained models will be made public.
重构无提议全视分割的语义逻辑
我们建议使通用语义分割框架能够分离实例,以便这些框架可以用于泛视分割任务。在语义分割框架中,神经网络输出的logits经过以下softmax函数的归一化后,只能区分类而不能区分实例。在这项工作中,我们发现对逻辑进行简单的正则化可以帮助挑选出实例,这是由基于能量的表示(能量表面)建模的。讨论了几种正则化方法,提出了一种基于持久同构的实例提取方法。最后,我们展示了logit正则化在不同基础语义分割框架上的通用性,并在cityscape、Mapillary远景和COCO上进行了评估。高质量的语义分割框架,如DeepLabV3+和HRNet-OCR,可以实现最先进的无提议的全光分割求解器的竞争性能。规范和训练有素的模型将被公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信