Penerapan model regresi multilevel untuk data ketepatan waktu lulus mahasiswa

Rahmatul Ula, Risnawati Ibnas, Khalilah Nurfadilah, M. I. Nawawi, Asfar Asfar
{"title":"Penerapan model regresi multilevel untuk data ketepatan waktu lulus mahasiswa","authors":"Rahmatul Ula, Risnawati Ibnas, Khalilah Nurfadilah, M. I. Nawawi, Asfar Asfar","doi":"10.19184/mims.v23i1.34479","DOIUrl":null,"url":null,"abstract":"Multilevel logistic regression is one of the alternatives to solving a problem that has a nested data structure like the student data in Alauddin in 2016. The data indicates that students are nested in each different study program. This condition allows the students in the same study program tend to have similar characteristics. The study aims to gain a student graduating model of punctuality using multilevel regression analysis and recognize factors that have a significant impact on student graduating time. Based on our research, we find the best model that fits the data to be the random intercepts model with a random slope of gender variable. The variables that have significant effects are gender, cumulative achievement index, educational background, and accredited program. \nKeywords: logistic regression, nested, multilevel logistic regression, graduation of studentMSC2020: 62J05","PeriodicalId":264607,"journal":{"name":"Majalah Ilmiah Matematika dan Statistika","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Majalah Ilmiah Matematika dan Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/mims.v23i1.34479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multilevel logistic regression is one of the alternatives to solving a problem that has a nested data structure like the student data in Alauddin in 2016. The data indicates that students are nested in each different study program. This condition allows the students in the same study program tend to have similar characteristics. The study aims to gain a student graduating model of punctuality using multilevel regression analysis and recognize factors that have a significant impact on student graduating time. Based on our research, we find the best model that fits the data to be the random intercepts model with a random slope of gender variable. The variables that have significant effects are gender, cumulative achievement index, educational background, and accredited program. Keywords: logistic regression, nested, multilevel logistic regression, graduation of studentMSC2020: 62J05
学生通过守时数据的多级回归模式的应用
多层逻辑回归是解决具有嵌套数据结构的问题的替代方案之一,例如2016年Alauddin的学生数据。数据表明,学生们嵌套在每个不同的学习项目中。这种情况使得同一学习项目的学生往往具有相似的特点。本研究旨在通过多层次回归分析得到学生准时毕业模型,并识别对学生毕业时间有显著影响的因素。根据我们的研究,我们发现最适合数据的模型是具有随机斜率的性别变量的随机截距模型。有显著影响的变量是性别、累积成就指数、教育背景和认证项目。关键词:逻辑回归,嵌套,多层次逻辑回归,学生毕业msc2020: 62J05
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信