Gaussian Markov random field modeling of textures in high-frequency synthetic aperture sonar images

S. Foo, J. T. Cobb, J. Stack
{"title":"Gaussian Markov random field modeling of textures in high-frequency synthetic aperture sonar images","authors":"S. Foo, J. T. Cobb, J. Stack","doi":"10.1117/12.775539","DOIUrl":null,"url":null,"abstract":"This paper describes our attempts to model sea bottom textures in high-frequency synthetic aperture sonar imagery using a Gaussian Markov random field. A least-squares estimation technique is first used to estimate the model parameters of the down-sampled grey-scale sonar images. To qualitatively measure estimation results, a fast sampling algorithm is then used to synthesize the sea bottom textures of a fourth-order Gaussian Markov random field which is then compared with the original sonar image. A total of four types of sea floor texture are used in the case study. Results show that the 4th order GMRF model mimics patchy sandy textures and sand ripple, but does not reproduce more complex textures exhibited by coral and rock formations.","PeriodicalId":133868,"journal":{"name":"SPIE Defense + Commercial Sensing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.775539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes our attempts to model sea bottom textures in high-frequency synthetic aperture sonar imagery using a Gaussian Markov random field. A least-squares estimation technique is first used to estimate the model parameters of the down-sampled grey-scale sonar images. To qualitatively measure estimation results, a fast sampling algorithm is then used to synthesize the sea bottom textures of a fourth-order Gaussian Markov random field which is then compared with the original sonar image. A total of four types of sea floor texture are used in the case study. Results show that the 4th order GMRF model mimics patchy sandy textures and sand ripple, but does not reproduce more complex textures exhibited by coral and rock formations.
高频合成孔径声纳图像纹理的高斯马尔可夫随机场建模
本文介绍了利用高斯马尔可夫随机场对高频合成孔径声呐图像中的海底纹理进行建模的尝试。首先利用最小二乘估计技术对下采样的灰度声纳图像进行模型参数估计。为了定性测量估计结果,采用快速采样算法合成四阶高斯马尔可夫随机场的海底纹理,并与原始声纳图像进行比较。在案例研究中总共使用了四种类型的海底纹理。结果表明,四阶GMRF模型模拟了斑片状砂质纹理和沙纹,但不能模拟珊瑚和岩层所表现的更复杂的纹理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信