Control of a re-entrant line manufacturing model with a reinforcement learning approach

J. Ramírez-Hernández, E. Fernandez
{"title":"Control of a re-entrant line manufacturing model with a reinforcement learning approach","authors":"J. Ramírez-Hernández, E. Fernandez","doi":"10.1109/ICMLA.2007.78","DOIUrl":null,"url":null,"abstract":"This paper presents the application of a reinforcement learning (RL) approach for the near-optimal control of a re-entrant line manufacturing (RLM) model. The RL approach utilizes an algorithm based on a gradient-descent TD(lambda) method to obtain both estimates of the optimal cost function and the control actions. Numerical experiments demonstrated the efficacy of the approach in estimating optimal actions by showing close approximations in performance w.r.t. the optimal strategy. Generalizations of the RL approach may have the advantage of scaling appropriately for RLM models with different dimensions in the state and action spaces.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

This paper presents the application of a reinforcement learning (RL) approach for the near-optimal control of a re-entrant line manufacturing (RLM) model. The RL approach utilizes an algorithm based on a gradient-descent TD(lambda) method to obtain both estimates of the optimal cost function and the control actions. Numerical experiments demonstrated the efficacy of the approach in estimating optimal actions by showing close approximations in performance w.r.t. the optimal strategy. Generalizations of the RL approach may have the advantage of scaling appropriately for RLM models with different dimensions in the state and action spaces.
用强化学习方法控制再入生产线制造模型
本文提出了一种应用强化学习(RL)方法对再入生产线制造(RLM)模型进行近最优控制的方法。RL方法利用基于梯度下降TD(lambda)方法的算法来获得最优成本函数和控制动作的估计。数值实验证明了该方法在估计最优行为方面的有效性,该方法在最优策略的性能上显示了接近的近似。RL方法的一般化可能具有适当缩放状态和动作空间中具有不同维度的RLM模型的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信