Parallel algorithm for prediction of variables in Simultaneous Equation Models

Óscar Gómez, J. López-Espín, A. P. Benavent
{"title":"Parallel algorithm for prediction of variables in Simultaneous Equation Models","authors":"Óscar Gómez, J. López-Espín, A. P. Benavent","doi":"10.1109/HPCS48598.2019.9188089","DOIUrl":null,"url":null,"abstract":"Simultaneous equation models (SEM) are multivariate techniques that reflect the presence of jointly endogenous variables. Traditionally, these models have been used in economy, expanding in last decades into other disciplines. One of usefulness of the SEM is the future estimation of the endogenous variables once the coefficient of the model has been obtained. This estimation is made using the actual information of endogenous and exogenous variables, as well as the matrices of the model. This work studies a parallel algorithm for the future prediction of the endogenous variables of an SEM model. Experimental tests comparing shared memory and message passing algorithms are made when varying the problem size, in order to check the behaviour of the algorithm and the ideal resources to use.","PeriodicalId":371856,"journal":{"name":"2019 International Conference on High Performance Computing & Simulation (HPCS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCS48598.2019.9188089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneous equation models (SEM) are multivariate techniques that reflect the presence of jointly endogenous variables. Traditionally, these models have been used in economy, expanding in last decades into other disciplines. One of usefulness of the SEM is the future estimation of the endogenous variables once the coefficient of the model has been obtained. This estimation is made using the actual information of endogenous and exogenous variables, as well as the matrices of the model. This work studies a parallel algorithm for the future prediction of the endogenous variables of an SEM model. Experimental tests comparing shared memory and message passing algorithms are made when varying the problem size, in order to check the behaviour of the algorithm and the ideal resources to use.
联立方程模型中变量预测的并行算法
联立方程模型(SEM)是反映联合内生变量存在的多变量技术。传统上,这些模型被用于经济学,在过去的几十年里扩展到其他学科。SEM的一个有用之处是,一旦模型的系数得到,就可以对内生变量进行未来的估计。这种估计是利用内源性和外源性变量的实际信息以及模型的矩阵进行的。本文研究了一种用于SEM模型内生变量未来预测的并行算法。在改变问题大小的情况下,对共享内存和消息传递算法进行了实验测试,以检查算法的行为和使用的理想资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信