Automatic tumor lesion detection and segmentation using histogram-based gravitational optimization algorithm

Nooshin Nabizadeh, Mohsen Dorodchi
{"title":"Automatic tumor lesion detection and segmentation using histogram-based gravitational optimization algorithm","authors":"Nooshin Nabizadeh, Mohsen Dorodchi","doi":"10.1109/CIMSIVP.2014.7013271","DOIUrl":null,"url":null,"abstract":"In this paper, an automated and customized brain tumor segmentation method is presented and validated against ground truth applying simulated T1-weighted magnetic resonance images in 25 subjects. A new intensity-based segmentation technique called histogram based gravitational optimization algorithm is developed to segment the brain image into discriminative sections (segments) with high accuracy. While the mathematical foundation of this algorithm is presented in details, the application of the proposed algorithm in the segmentation of single T1-weighted images (T1-w) modality of healthy and lesion MR images is also presented. The results show that the tumor lesion is segmented from the detected lesion slice with 89.6% accuracy.","PeriodicalId":210556,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIVP.2014.7013271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, an automated and customized brain tumor segmentation method is presented and validated against ground truth applying simulated T1-weighted magnetic resonance images in 25 subjects. A new intensity-based segmentation technique called histogram based gravitational optimization algorithm is developed to segment the brain image into discriminative sections (segments) with high accuracy. While the mathematical foundation of this algorithm is presented in details, the application of the proposed algorithm in the segmentation of single T1-weighted images (T1-w) modality of healthy and lesion MR images is also presented. The results show that the tumor lesion is segmented from the detected lesion slice with 89.6% accuracy.
基于直方图的重力优化算法的肿瘤病灶自动检测与分割
本文提出了一种自动化和定制的脑肿瘤分割方法,并利用模拟t1加权磁共振图像对25名受试者进行了地面真实验证。提出了一种新的基于强度的分割技术,即基于直方图的重力优化算法,可以高精度地将脑图像分割成具有判别性的部分(段)。在详细介绍该算法的数学基础的同时,还介绍了该算法在健康和病变MR图像的T1-w单模态分割中的应用。结果表明,从检测到的病变切片中分割出肿瘤病灶的准确率为89.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信