{"title":"Categorizing Autonomic Nervous System (ANS) Emotional Signals using Bio-Sensors for HRI within the MAUI Paradigm","authors":"Christine L. Lisetti, Fatma Nasoz","doi":"10.1109/ROMAN.2006.314430","DOIUrl":null,"url":null,"abstract":"In this article, we discuss the strong relationship between affect and cognition and the importance of emotions in multimodal human computer interaction (HCI) and user-modeling. We introduce the overall paradigm for our multi-modal system that aims at recognizing its users' emotions and at responding to them accordingly depending upon the current context or application. We then describe the design of the emotion elicitation experiment we conducted by collecting, via wearable computers, physiological signals from the autonomic nervous system (galvanic skin response, heart rate, temperature) and mapping them to certain emotions (sadness, anger, fear, surprise, frustration, and amusement). We show the results of three different supervised learning algorithms that categorize these collected signals in terms of emotions, and generalize their learning to recognize emotions from new collections of signals. We finally discuss possible broader impact and possible applications of emotion recognition for multimodal intelligent systems","PeriodicalId":254129,"journal":{"name":"ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROMAN.2006.314430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this article, we discuss the strong relationship between affect and cognition and the importance of emotions in multimodal human computer interaction (HCI) and user-modeling. We introduce the overall paradigm for our multi-modal system that aims at recognizing its users' emotions and at responding to them accordingly depending upon the current context or application. We then describe the design of the emotion elicitation experiment we conducted by collecting, via wearable computers, physiological signals from the autonomic nervous system (galvanic skin response, heart rate, temperature) and mapping them to certain emotions (sadness, anger, fear, surprise, frustration, and amusement). We show the results of three different supervised learning algorithms that categorize these collected signals in terms of emotions, and generalize their learning to recognize emotions from new collections of signals. We finally discuss possible broader impact and possible applications of emotion recognition for multimodal intelligent systems