Electromagnetic Device Optimization using Improved Differential Evolution Methods

L. dos Santos Coelho, P. Alotto
{"title":"Electromagnetic Device Optimization using Improved Differential Evolution Methods","authors":"L. dos Santos Coelho, P. Alotto","doi":"10.1109/CEFC-06.2006.1633085","DOIUrl":null,"url":null,"abstract":"Recently, evolutionary algorithms (e.g. genetic algorithms, evolutionary programming, and evolution strategies) have proven to be useful tools for the optimization of difficult problems in electromagnetics. Differential evolution (DE) is one comparatively simple variant of an evolutionary algorithm using floating-point encoding and few control parameters. This work presents improved DE algorithms based on linearly time varying control parameters, sinusoidal functions, and diversity analysis of population","PeriodicalId":262549,"journal":{"name":"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 12th Biennial IEEE Conference on Electromagnetic Field Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC-06.2006.1633085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, evolutionary algorithms (e.g. genetic algorithms, evolutionary programming, and evolution strategies) have proven to be useful tools for the optimization of difficult problems in electromagnetics. Differential evolution (DE) is one comparatively simple variant of an evolutionary algorithm using floating-point encoding and few control parameters. This work presents improved DE algorithms based on linearly time varying control parameters, sinusoidal functions, and diversity analysis of population
基于改进差分进化方法的电磁器件优化
最近,进化算法(如遗传算法、进化规划和进化策略)已被证明是优化电磁学难题的有用工具。差分进化(DE)是一种相对简单的进化算法变体,使用浮点编码和很少的控制参数。这项工作提出了基于线性时变控制参数、正弦函数和种群多样性分析的改进DE算法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信