Decision Level Fusion for Diagnosing Autism Spectrum Disorder

Devika Kuttala, V. R. M. Oruganti
{"title":"Decision Level Fusion for Diagnosing Autism Spectrum Disorder","authors":"Devika Kuttala, V. R. M. Oruganti","doi":"10.1109/TENCON54134.2021.9707343","DOIUrl":null,"url":null,"abstract":"Automated diagnosis of Autism Spectrum Disorder(ASD) by integrating Machine Learning (ML) techniques is rapidly growing in the field of neuroscience. In this study, we proposed an unsupervised approach for diagnosing ASD with Deep Learning (DL) models such as UNet, GAN, and SAGAN. The axial and coronal slices of T1-weighted longitudinal Structural Magnetic Resonance Imaging (sMRI) from multisite ABIDE II are used for the study. At first, the DL models are trained only with Typical Development (TD) subjects to reconstruct multiple slices, and then we used both ASD and TD subjects for testing. outliers are detected using a combination of L2 loss and cosine similarity loss. Finally, individual classification results from axial and coronal slices are fused at the decision level using maximum probability yielding classification accuracy of 95.65% and an AUC score of 0.90.","PeriodicalId":405859,"journal":{"name":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2021 - 2021 IEEE Region 10 Conference (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON54134.2021.9707343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automated diagnosis of Autism Spectrum Disorder(ASD) by integrating Machine Learning (ML) techniques is rapidly growing in the field of neuroscience. In this study, we proposed an unsupervised approach for diagnosing ASD with Deep Learning (DL) models such as UNet, GAN, and SAGAN. The axial and coronal slices of T1-weighted longitudinal Structural Magnetic Resonance Imaging (sMRI) from multisite ABIDE II are used for the study. At first, the DL models are trained only with Typical Development (TD) subjects to reconstruct multiple slices, and then we used both ASD and TD subjects for testing. outliers are detected using a combination of L2 loss and cosine similarity loss. Finally, individual classification results from axial and coronal slices are fused at the decision level using maximum probability yielding classification accuracy of 95.65% and an AUC score of 0.90.
决策水平融合诊断自闭症谱系障碍
结合机器学习(ML)技术对自闭症谱系障碍(ASD)的自动诊断在神经科学领域迅速发展。在这项研究中,我们提出了一种使用深度学习(DL)模型(如UNet, GAN和SAGAN)诊断ASD的无监督方法。本研究使用的是来自多站点ABIDE II的t1加权纵向结构磁共振成像(sMRI)的轴向和冠状切片。首先,仅使用典型发展(TD)受试者训练DL模型来重建多个切片,然后我们同时使用ASD和TD受试者进行测试。使用L2损失和余弦相似损失的组合来检测异常值。最后,将轴向和冠状切片的个体分类结果在决策层面进行最大概率融合,分类准确率为95.65%,AUC评分为0.90。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信